拉曼地图数据中特定生化特征的自动和无监督识别

E. Torti, Beatrice Marcinnò, R. Vanna, C. Morasso, Francesca Picotti, L. Villani, F. Leporati
{"title":"拉曼地图数据中特定生化特征的自动和无监督识别","authors":"E. Torti, Beatrice Marcinnò, R. Vanna, C. Morasso, Francesca Picotti, L. Villani, F. Leporati","doi":"10.1109/DSD.2019.00073","DOIUrl":null,"url":null,"abstract":"Raman imaging is a hyperspectral approach able to provide information on the spatial distribution of a particular biochemical feature without the use of any staining or sample processing. The extraction of the relevant information from the large dataset obtained however is a laborious and complex task that still requires the development of robust chemometric approaches. In this paper, we propose a general framework for analyzing data acquired by a commercial Raman spectrometers. This framework is based both on exploiting spectral information and unsupervised clustering, in order to clearly identify the borders and the compositions of different regions of interest. Finally, we describe an efficient GPU-based parallelization, which ensures a fast image classification.","PeriodicalId":217233,"journal":{"name":"2019 22nd Euromicro Conference on Digital System Design (DSD)","volume":"225 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic and Unsupervised Identification of Specific Biochemical Features from Raman Mapping Data\",\"authors\":\"E. Torti, Beatrice Marcinnò, R. Vanna, C. Morasso, Francesca Picotti, L. Villani, F. Leporati\",\"doi\":\"10.1109/DSD.2019.00073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Raman imaging is a hyperspectral approach able to provide information on the spatial distribution of a particular biochemical feature without the use of any staining or sample processing. The extraction of the relevant information from the large dataset obtained however is a laborious and complex task that still requires the development of robust chemometric approaches. In this paper, we propose a general framework for analyzing data acquired by a commercial Raman spectrometers. This framework is based both on exploiting spectral information and unsupervised clustering, in order to clearly identify the borders and the compositions of different regions of interest. Finally, we describe an efficient GPU-based parallelization, which ensures a fast image classification.\",\"PeriodicalId\":217233,\"journal\":{\"name\":\"2019 22nd Euromicro Conference on Digital System Design (DSD)\",\"volume\":\"225 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 22nd Euromicro Conference on Digital System Design (DSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSD.2019.00073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22nd Euromicro Conference on Digital System Design (DSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSD.2019.00073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

拉曼成像是一种高光谱方法,能够在不使用任何染色或样品处理的情况下提供特定生化特征的空间分布信息。然而,从获得的大量数据集中提取相关信息是一项艰巨而复杂的任务,仍然需要开发强大的化学计量方法。在本文中,我们提出了一个分析商用拉曼光谱仪获得的数据的一般框架。该框架基于利用光谱信息和无监督聚类,以便清晰地识别不同感兴趣区域的边界和组成。最后,我们描述了一种高效的基于gpu的并行化算法,保证了图像的快速分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic and Unsupervised Identification of Specific Biochemical Features from Raman Mapping Data
Raman imaging is a hyperspectral approach able to provide information on the spatial distribution of a particular biochemical feature without the use of any staining or sample processing. The extraction of the relevant information from the large dataset obtained however is a laborious and complex task that still requires the development of robust chemometric approaches. In this paper, we propose a general framework for analyzing data acquired by a commercial Raman spectrometers. This framework is based both on exploiting spectral information and unsupervised clustering, in order to clearly identify the borders and the compositions of different regions of interest. Finally, we describe an efficient GPU-based parallelization, which ensures a fast image classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信