演化混沌神经系统用于时间序列预测

Dong-Wook Lee, K. Sim
{"title":"演化混沌神经系统用于时间序列预测","authors":"Dong-Wook Lee, K. Sim","doi":"10.1109/CEC.1999.781941","DOIUrl":null,"url":null,"abstract":"We present a new type of neural architecture consisting of chaotic neurons and apply it to the prediction of chaotic time series signals. To evolve chaotic neural systems, we use cellular automata whose production rules are evolved based on a DNA coding method. The structure of networks are appropriate for learning nonlinear, chaotic, and nonstationary systems. In order to verify their effectiveness, we apply the evolutionary chaotic neural systems to one-step ahead prediction of Mackey-Glass time series data.","PeriodicalId":292523,"journal":{"name":"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Evolving chaotic neural systems for time series prediction\",\"authors\":\"Dong-Wook Lee, K. Sim\",\"doi\":\"10.1109/CEC.1999.781941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new type of neural architecture consisting of chaotic neurons and apply it to the prediction of chaotic time series signals. To evolve chaotic neural systems, we use cellular automata whose production rules are evolved based on a DNA coding method. The structure of networks are appropriate for learning nonlinear, chaotic, and nonstationary systems. In order to verify their effectiveness, we apply the evolutionary chaotic neural systems to one-step ahead prediction of Mackey-Glass time series data.\",\"PeriodicalId\":292523,\"journal\":{\"name\":\"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.1999.781941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.1999.781941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种由混沌神经元组成的新型神经结构,并将其应用于混沌时间序列信号的预测。为了进化混沌神经系统,我们使用元胞自动机,其产生规则是基于DNA编码方法进化的。网络的结构适合于学习非线性、混沌和非平稳系统。为了验证其有效性,我们将进化混沌神经系统应用于Mackey-Glass时间序列数据的一步提前预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolving chaotic neural systems for time series prediction
We present a new type of neural architecture consisting of chaotic neurons and apply it to the prediction of chaotic time series signals. To evolve chaotic neural systems, we use cellular automata whose production rules are evolved based on a DNA coding method. The structure of networks are appropriate for learning nonlinear, chaotic, and nonstationary systems. In order to verify their effectiveness, we apply the evolutionary chaotic neural systems to one-step ahead prediction of Mackey-Glass time series data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信