加权MAX-CUT量子近似优化算法的噪声分析

Lakshya Priyadarshi, Utkarsh Azad
{"title":"加权MAX-CUT量子近似优化算法的噪声分析","authors":"Lakshya Priyadarshi, Utkarsh Azad","doi":"10.1109/CICT48419.2019.9066254","DOIUrl":null,"url":null,"abstract":"In this paper, we describe the simulation of Ising minimization on a classical machine by executing variational quantum algorithms on our density-matrix simulator. We outline the Ising formulation of the Graph Partitioning problem and the Hamiltonian Cycle problem, and solve the Max-Cut variant of graph partitioning for a weighted square graph $Sq_{2}$ using the Quantum Approximate Optimization Algorithm. We finally study the effect of errors present in Noisy Intermediate-Scale Quantum processors on the obtained solutions. This paper illustrates the approach to approximately solving hard combinatorial optimization problems using a hybrid quantum-classical scheme and describes the issues in hardware implementation of such schemes. The simulations of NISQ noise models will be useful in understanding the performance and capabilities of such approaches.","PeriodicalId":234540,"journal":{"name":"2019 IEEE Conference on Information and Communication Technology","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noise Analysis of Quantum Approximate Optimization Algorithm on Weighted MAX-CUT\",\"authors\":\"Lakshya Priyadarshi, Utkarsh Azad\",\"doi\":\"10.1109/CICT48419.2019.9066254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe the simulation of Ising minimization on a classical machine by executing variational quantum algorithms on our density-matrix simulator. We outline the Ising formulation of the Graph Partitioning problem and the Hamiltonian Cycle problem, and solve the Max-Cut variant of graph partitioning for a weighted square graph $Sq_{2}$ using the Quantum Approximate Optimization Algorithm. We finally study the effect of errors present in Noisy Intermediate-Scale Quantum processors on the obtained solutions. This paper illustrates the approach to approximately solving hard combinatorial optimization problems using a hybrid quantum-classical scheme and describes the issues in hardware implementation of such schemes. The simulations of NISQ noise models will be useful in understanding the performance and capabilities of such approaches.\",\"PeriodicalId\":234540,\"journal\":{\"name\":\"2019 IEEE Conference on Information and Communication Technology\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Conference on Information and Communication Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICT48419.2019.9066254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Conference on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICT48419.2019.9066254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们描述了通过在我们的密度矩阵模拟器上执行变分量子算法在经典机器上模拟伊辛最小化。我们概述了图划分问题和哈密顿循环问题的Ising公式,并利用量子近似优化算法求解了加权方形图$Sq_{2}$的图划分的极大切变体。最后,我们研究了噪声中尺度量子处理器中存在的误差对得到的解的影响。本文阐述了利用量子-经典混合方案近似求解组合优化问题的方法,并描述了该方案在硬件实现中的问题。NISQ噪声模型的模拟将有助于理解这些方法的性能和能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noise Analysis of Quantum Approximate Optimization Algorithm on Weighted MAX-CUT
In this paper, we describe the simulation of Ising minimization on a classical machine by executing variational quantum algorithms on our density-matrix simulator. We outline the Ising formulation of the Graph Partitioning problem and the Hamiltonian Cycle problem, and solve the Max-Cut variant of graph partitioning for a weighted square graph $Sq_{2}$ using the Quantum Approximate Optimization Algorithm. We finally study the effect of errors present in Noisy Intermediate-Scale Quantum processors on the obtained solutions. This paper illustrates the approach to approximately solving hard combinatorial optimization problems using a hybrid quantum-classical scheme and describes the issues in hardware implementation of such schemes. The simulations of NISQ noise models will be useful in understanding the performance and capabilities of such approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信