Giuseppe Boccignone, A. Marcelli, Paolo Napoletano, M. Ferraro
{"title":"基于信念传播的运动估计","authors":"Giuseppe Boccignone, A. Marcelli, Paolo Napoletano, M. Ferraro","doi":"10.1109/ICIAP.2007.88","DOIUrl":null,"url":null,"abstract":"We present a probabilistic model for motion estimation in which motion characteristics are inferred on the basis of a finite mixture of motion models. The model is graphically represented in the form of a pairwise Markov random field network upon which a Loopy belief propagation algorithm is exploited to perform inference. Experiments on different video clips are presented and discussed.","PeriodicalId":118466,"journal":{"name":"14th International Conference on Image Analysis and Processing (ICIAP 2007)","volume":"177 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Motion Estimation via Belief Propagation\",\"authors\":\"Giuseppe Boccignone, A. Marcelli, Paolo Napoletano, M. Ferraro\",\"doi\":\"10.1109/ICIAP.2007.88\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a probabilistic model for motion estimation in which motion characteristics are inferred on the basis of a finite mixture of motion models. The model is graphically represented in the form of a pairwise Markov random field network upon which a Loopy belief propagation algorithm is exploited to perform inference. Experiments on different video clips are presented and discussed.\",\"PeriodicalId\":118466,\"journal\":{\"name\":\"14th International Conference on Image Analysis and Processing (ICIAP 2007)\",\"volume\":\"177 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"14th International Conference on Image Analysis and Processing (ICIAP 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAP.2007.88\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th International Conference on Image Analysis and Processing (ICIAP 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2007.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present a probabilistic model for motion estimation in which motion characteristics are inferred on the basis of a finite mixture of motion models. The model is graphically represented in the form of a pairwise Markov random field network upon which a Loopy belief propagation algorithm is exploited to perform inference. Experiments on different video clips are presented and discussed.