单声道语音识别的子空间建模技术

cBhargav Srinivas Ch, cNeethu Mariam Joy, cRaghavendra R. Bilgi, C. Umesh
{"title":"单声道语音识别的子空间建模技术","authors":"cBhargav Srinivas Ch, cNeethu Mariam Joy, cRaghavendra R. Bilgi, C. Umesh","doi":"10.1109/NCC.2013.6487994","DOIUrl":null,"url":null,"abstract":"In this paper we propose an adaptive training method for parameter estimation of acoustic models in the speech recognition system. Our technique is inspired from the Cluster Adaptive Training (CAT) method which is used for rapid speaker adaptation. Instead of adapting the model to a speaker as in CAT, we adapt the parameters of the context dependent triphone states (tied states) from context independent states (monophones). This is achieved by finding a global mapping of parameters of the tied state from the parametric subspace of monophone models. This technique is similar to Subspace Gaussian Mixture Model (SGMM), but differs in the initialization of parameters and in the update of weights of Gaussian mixture components. We show that, the proposed method can match the performance of the conventional HMM system for large amount of training data and outperforms it when the number of training examples are less.","PeriodicalId":202526,"journal":{"name":"2013 National Conference on Communications (NCC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subspace modeling technique using monophones for speech recognition\",\"authors\":\"cBhargav Srinivas Ch, cNeethu Mariam Joy, cRaghavendra R. Bilgi, C. Umesh\",\"doi\":\"10.1109/NCC.2013.6487994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose an adaptive training method for parameter estimation of acoustic models in the speech recognition system. Our technique is inspired from the Cluster Adaptive Training (CAT) method which is used for rapid speaker adaptation. Instead of adapting the model to a speaker as in CAT, we adapt the parameters of the context dependent triphone states (tied states) from context independent states (monophones). This is achieved by finding a global mapping of parameters of the tied state from the parametric subspace of monophone models. This technique is similar to Subspace Gaussian Mixture Model (SGMM), but differs in the initialization of parameters and in the update of weights of Gaussian mixture components. We show that, the proposed method can match the performance of the conventional HMM system for large amount of training data and outperforms it when the number of training examples are less.\",\"PeriodicalId\":202526,\"journal\":{\"name\":\"2013 National Conference on Communications (NCC)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC.2013.6487994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2013.6487994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种语音识别系统中声学模型参数估计的自适应训练方法。我们的技术灵感来自于用于快速适应说话人的聚类自适应训练(CAT)方法。我们没有像在CAT中那样将模型适应于说话者,而是从独立于上下文的状态(单声道)中适应依赖于上下文的三声道状态(捆绑状态)的参数。这是通过从单声道模型的参数子空间中找到绑定状态参数的全局映射来实现的。该方法与子空间高斯混合模型(SGMM)相似,但在参数初始化和高斯混合分量权值更新方面有所不同。结果表明,在训练数据量较大的情况下,该方法可以达到传统HMM系统的性能,并且在训练样本数量较少的情况下优于传统HMM系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subspace modeling technique using monophones for speech recognition
In this paper we propose an adaptive training method for parameter estimation of acoustic models in the speech recognition system. Our technique is inspired from the Cluster Adaptive Training (CAT) method which is used for rapid speaker adaptation. Instead of adapting the model to a speaker as in CAT, we adapt the parameters of the context dependent triphone states (tied states) from context independent states (monophones). This is achieved by finding a global mapping of parameters of the tied state from the parametric subspace of monophone models. This technique is similar to Subspace Gaussian Mixture Model (SGMM), but differs in the initialization of parameters and in the update of weights of Gaussian mixture components. We show that, the proposed method can match the performance of the conventional HMM system for large amount of training data and outperforms it when the number of training examples are less.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信