紧化函数与fraier - jawerth变换

D. Fuhrmann, A. Kumar, J. R. Cox
{"title":"紧化函数与fraier - jawerth变换","authors":"D. Fuhrmann, A. Kumar, J. R. Cox","doi":"10.1109/MDSP.1989.97063","DOIUrl":null,"url":null,"abstract":"Summary form only given. The Frazier-Jawerth transform (FJT), originally the phi-transform, is similar to the wavelet transform and is distinguished by the fact that the analyzing functions form an overcomplete basis for he signal space and may be nonorthogonal. This added flexibility makes possible the definition of optimal analyzing functions, which are the focus of this study. For continuous-time and infinite discrete-time signals, the optimally localized functions are the prolate spheroidal wave functions and their discrete versions. For finite discrete-time signals and images, generalizations of these functions that are applicable for use in the FJT have been identified by the authors.<<ETX>>","PeriodicalId":340681,"journal":{"name":"Sixth Multidimensional Signal Processing Workshop,","volume":"172 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Compact functions and the Frazier-Jawerth transform\",\"authors\":\"D. Fuhrmann, A. Kumar, J. R. Cox\",\"doi\":\"10.1109/MDSP.1989.97063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. The Frazier-Jawerth transform (FJT), originally the phi-transform, is similar to the wavelet transform and is distinguished by the fact that the analyzing functions form an overcomplete basis for he signal space and may be nonorthogonal. This added flexibility makes possible the definition of optimal analyzing functions, which are the focus of this study. For continuous-time and infinite discrete-time signals, the optimally localized functions are the prolate spheroidal wave functions and their discrete versions. For finite discrete-time signals and images, generalizations of these functions that are applicable for use in the FJT have been identified by the authors.<<ETX>>\",\"PeriodicalId\":340681,\"journal\":{\"name\":\"Sixth Multidimensional Signal Processing Workshop,\",\"volume\":\"172 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth Multidimensional Signal Processing Workshop,\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MDSP.1989.97063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth Multidimensional Signal Processing Workshop,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDSP.1989.97063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

只提供摘要形式。弗雷泽- jawerth变换(FJT),最初是phi变换,与小波变换类似,其特点是分析函数形成信号空间的过完备基,并且可以是非正交的。这种增加的灵活性使得定义最优分析函数成为可能,这是本研究的重点。对于连续时间和无限离散时间信号,最优定域函数是长球面波函数及其离散版本。对于有限的离散时间信号和图像,作者已经确定了适用于FJT的这些函数的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compact functions and the Frazier-Jawerth transform
Summary form only given. The Frazier-Jawerth transform (FJT), originally the phi-transform, is similar to the wavelet transform and is distinguished by the fact that the analyzing functions form an overcomplete basis for he signal space and may be nonorthogonal. This added flexibility makes possible the definition of optimal analyzing functions, which are the focus of this study. For continuous-time and infinite discrete-time signals, the optimally localized functions are the prolate spheroidal wave functions and their discrete versions. For finite discrete-time signals and images, generalizations of these functions that are applicable for use in the FJT have been identified by the authors.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信