基于MIMIC-III数据库的机器学习预测重症监护病房(ICU)住院时间

M. Hasan, S. Hamdan, S. Poudel, J. Vargas, K. Poudel
{"title":"基于MIMIC-III数据库的机器学习预测重症监护病房(ICU)住院时间","authors":"M. Hasan, S. Hamdan, S. Poudel, J. Vargas, K. Poudel","doi":"10.1109/CAI54212.2023.00142","DOIUrl":null,"url":null,"abstract":"The length-of-stay (LOS) is critical for patient care and accommodation in the intensive care unit (ICU). In this work, we developed a framework to predict the LOS using the Medical Information Mart for Intensive Care (MIMIC-III) database. We extracted six features from individual patients and submitted them to the regressors model and examined how well these features could predict LOS. We considered four prediction regimes; extreme gradient boosting (XGBoost), support vector regressor, random forest, and voting regressor. Our analysis reveals that XGBoost yields the best result among other regressors with R2 0.86 and root mean square error (RMSE) 1.2. Remarkably, our results show that ICD9 (9th International classification of diseases code), saline intake per hour, and drug rates are the top three critical features for predicting the LOS.","PeriodicalId":129324,"journal":{"name":"2023 IEEE Conference on Artificial Intelligence (CAI)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Length-of-stay at Intensive Care Unit (ICU) Using Machine Learning based on MIMIC-III Database\",\"authors\":\"M. Hasan, S. Hamdan, S. Poudel, J. Vargas, K. Poudel\",\"doi\":\"10.1109/CAI54212.2023.00142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The length-of-stay (LOS) is critical for patient care and accommodation in the intensive care unit (ICU). In this work, we developed a framework to predict the LOS using the Medical Information Mart for Intensive Care (MIMIC-III) database. We extracted six features from individual patients and submitted them to the regressors model and examined how well these features could predict LOS. We considered four prediction regimes; extreme gradient boosting (XGBoost), support vector regressor, random forest, and voting regressor. Our analysis reveals that XGBoost yields the best result among other regressors with R2 0.86 and root mean square error (RMSE) 1.2. Remarkably, our results show that ICD9 (9th International classification of diseases code), saline intake per hour, and drug rates are the top three critical features for predicting the LOS.\",\"PeriodicalId\":129324,\"journal\":{\"name\":\"2023 IEEE Conference on Artificial Intelligence (CAI)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Conference on Artificial Intelligence (CAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAI54212.2023.00142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Artificial Intelligence (CAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAI54212.2023.00142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

住院时间(LOS)对于重症监护病房(ICU)的患者护理和住宿至关重要。在这项工作中,我们开发了一个使用重症医疗信息市场(MIMIC-III)数据库预测LOS的框架。我们从单个患者中提取了六个特征,并将它们提交到回归模型中,并检查了这些特征对LOS的预测效果。我们考虑了四种预测机制;极端梯度增强(XGBoost),支持向量回归器,随机森林和投票回归器。我们的分析表明,XGBoost在其他回归因子中产生最好的结果,R2为0.86,均方根误差(RMSE)为1.2。值得注意的是,我们的研究结果表明,ICD9(第9国际疾病分类代码)、每小时生理盐水摄入量和药物率是预测LOS的前三个关键特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of Length-of-stay at Intensive Care Unit (ICU) Using Machine Learning based on MIMIC-III Database
The length-of-stay (LOS) is critical for patient care and accommodation in the intensive care unit (ICU). In this work, we developed a framework to predict the LOS using the Medical Information Mart for Intensive Care (MIMIC-III) database. We extracted six features from individual patients and submitted them to the regressors model and examined how well these features could predict LOS. We considered four prediction regimes; extreme gradient boosting (XGBoost), support vector regressor, random forest, and voting regressor. Our analysis reveals that XGBoost yields the best result among other regressors with R2 0.86 and root mean square error (RMSE) 1.2. Remarkably, our results show that ICD9 (9th International classification of diseases code), saline intake per hour, and drug rates are the top three critical features for predicting the LOS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信