{"title":"通过通用MDS代码转换实现维修和更新的最优性","authors":"Hanxu Hou, P. Lee, Y. Han","doi":"10.1109/ISIT44484.2020.9174250","DOIUrl":null,"url":null,"abstract":"An (n, k) maximum distance separable (MDS) code encodes kα data symbols into nα symbols that are stored in n nodes with α symbols each, such that the kα data symbols can be reconstructed from any k out of n nodes. MDS codes achieve optimal repair access if we can repair the lost symbols of any single node by accessing $\\frac{\\alpha }{{d - k + 1}}$ symbols from each of d other surviving nodes, where k + 1 ≤ d ≤ n - 1. In this paper, we propose a generic transformation for any MDS code to achieve optimal repair access for a single-node repair among d - k + 1 nodes, while the transformed MDS codes maintain the same update bandwidth (i.e., the total amount of symbols transferred for updating the symbols of affected nodes when some data symbols are updated) as that of the underlying MDS codes. By recursively applying our transformation for existing MDS codes with the minimum update bandwidth, we can obtain multi-layer transformed MDS codes that achieve both optimal repair access for any single-node repair among all n nodes and minimum update bandwidth.","PeriodicalId":159311,"journal":{"name":"2020 IEEE International Symposium on Information Theory (ISIT)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Toward Optimality in Both Repair and Update via Generic MDS Code Transformation\",\"authors\":\"Hanxu Hou, P. Lee, Y. Han\",\"doi\":\"10.1109/ISIT44484.2020.9174250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An (n, k) maximum distance separable (MDS) code encodes kα data symbols into nα symbols that are stored in n nodes with α symbols each, such that the kα data symbols can be reconstructed from any k out of n nodes. MDS codes achieve optimal repair access if we can repair the lost symbols of any single node by accessing $\\\\frac{\\\\alpha }{{d - k + 1}}$ symbols from each of d other surviving nodes, where k + 1 ≤ d ≤ n - 1. In this paper, we propose a generic transformation for any MDS code to achieve optimal repair access for a single-node repair among d - k + 1 nodes, while the transformed MDS codes maintain the same update bandwidth (i.e., the total amount of symbols transferred for updating the symbols of affected nodes when some data symbols are updated) as that of the underlying MDS codes. By recursively applying our transformation for existing MDS codes with the minimum update bandwidth, we can obtain multi-layer transformed MDS codes that achieve both optimal repair access for any single-node repair among all n nodes and minimum update bandwidth.\",\"PeriodicalId\":159311,\"journal\":{\"name\":\"2020 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT44484.2020.9174250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT44484.2020.9174250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
一个(n, k)最大距离可分离码(MDS)将k个α数据符号编码成n个α符号,这些符号存储在n个节点中,每个节点有α符号,这样kα数据符号可以从n个节点中的任意k重构。如果我们可以通过访问其他d个幸存节点的$\frac{\alpha }{{d - k + 1}}$符号来修复任何单个节点的丢失符号,MDS代码实现了最优修复访问,其中k + 1≤d≤n - 1。在本文中,我们提出了一种对任意MDS代码的通用转换,以实现d - k + 1个节点间单节点修复的最优修复访问,而转换后的MDS代码保持与底层MDS代码相同的更新带宽(即更新某些数据符号时更新受影响节点符号所传输的符号总量)。通过对已有的更新带宽最小的MDS代码进行递归变换,我们可以得到多层变换后的MDS代码,在所有n个节点中,任意一个单节点的修复访问都是最优的,并且更新带宽最小。
Toward Optimality in Both Repair and Update via Generic MDS Code Transformation
An (n, k) maximum distance separable (MDS) code encodes kα data symbols into nα symbols that are stored in n nodes with α symbols each, such that the kα data symbols can be reconstructed from any k out of n nodes. MDS codes achieve optimal repair access if we can repair the lost symbols of any single node by accessing $\frac{\alpha }{{d - k + 1}}$ symbols from each of d other surviving nodes, where k + 1 ≤ d ≤ n - 1. In this paper, we propose a generic transformation for any MDS code to achieve optimal repair access for a single-node repair among d - k + 1 nodes, while the transformed MDS codes maintain the same update bandwidth (i.e., the total amount of symbols transferred for updating the symbols of affected nodes when some data symbols are updated) as that of the underlying MDS codes. By recursively applying our transformation for existing MDS codes with the minimum update bandwidth, we can obtain multi-layer transformed MDS codes that achieve both optimal repair access for any single-node repair among all n nodes and minimum update bandwidth.