{"title":"非线性pso收敛分析及参数调整方案","authors":"Xuexue Zhao, Gang-lin Wang","doi":"10.1109/BICTA.2010.5645105","DOIUrl":null,"url":null,"abstract":"Linear parameter adjustment (LP A) schemes had been widely used in particle swarm optimization (PSO). In this paper, we develop a novel PSO algorithm with nonlinear parameter adjustment (NLP A) called nonlinear PSO and present its convergence analysis. Simulations on five standard test functions confirm the validity of the nonlinear parameter adjustment methods.","PeriodicalId":302619,"journal":{"name":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nonlinear PSO—Convergence analysis and parameter adjustment schemes\",\"authors\":\"Xuexue Zhao, Gang-lin Wang\",\"doi\":\"10.1109/BICTA.2010.5645105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear parameter adjustment (LP A) schemes had been widely used in particle swarm optimization (PSO). In this paper, we develop a novel PSO algorithm with nonlinear parameter adjustment (NLP A) called nonlinear PSO and present its convergence analysis. Simulations on five standard test functions confirm the validity of the nonlinear parameter adjustment methods.\",\"PeriodicalId\":302619,\"journal\":{\"name\":\"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BICTA.2010.5645105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BICTA.2010.5645105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonlinear PSO—Convergence analysis and parameter adjustment schemes
Linear parameter adjustment (LP A) schemes had been widely used in particle swarm optimization (PSO). In this paper, we develop a novel PSO algorithm with nonlinear parameter adjustment (NLP A) called nonlinear PSO and present its convergence analysis. Simulations on five standard test functions confirm the validity of the nonlinear parameter adjustment methods.