驯服自同构群的组合

St'ephane Lamy
{"title":"驯服自同构群的组合","authors":"St'ephane Lamy","doi":"10.5802/afst.1597","DOIUrl":null,"url":null,"abstract":"We study the group Tame($\\mathbf A^3$) of tame automorphisms of the 3-dimensional affine space, over a field of characteristic zero. We recover, in a unified and (hopefully) simplified way, previous results of Kuroda, Shestakov, Umirbaev and Wright, about the theory of reduction and the relations in Tame($\\mathbf A^3$). The novelty in our presentation is the emphasis on a simply connected 2-dimensional simplicial complex on which Tame($\\mathbf A^3$) acts by isometries.","PeriodicalId":122059,"journal":{"name":"Annales de la faculté des sciences de Toulouse Mathématiques","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Combinatorics of the tame automorphism group\",\"authors\":\"St'ephane Lamy\",\"doi\":\"10.5802/afst.1597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the group Tame($\\\\mathbf A^3$) of tame automorphisms of the 3-dimensional affine space, over a field of characteristic zero. We recover, in a unified and (hopefully) simplified way, previous results of Kuroda, Shestakov, Umirbaev and Wright, about the theory of reduction and the relations in Tame($\\\\mathbf A^3$). The novelty in our presentation is the emphasis on a simply connected 2-dimensional simplicial complex on which Tame($\\\\mathbf A^3$) acts by isometries.\",\"PeriodicalId\":122059,\"journal\":{\"name\":\"Annales de la faculté des sciences de Toulouse Mathématiques\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales de la faculté des sciences de Toulouse Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/afst.1597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de la faculté des sciences de Toulouse Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/afst.1597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们研究了特征为零的域上三维仿射空间的驯服自同构群驯服($\mathbf A^3$)。我们以一种统一的(希望)简化的方式恢复了Kuroda, Shestakov, Umirbaev和Wright先前关于约简理论和Tame($\mathbf a ^3$)中的关系的结果。在我们的演示中,新颖之处在于强调了一个单连通的二维简单复合体,其中Tame($\mathbf a ^3$)通过等距作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combinatorics of the tame automorphism group
We study the group Tame($\mathbf A^3$) of tame automorphisms of the 3-dimensional affine space, over a field of characteristic zero. We recover, in a unified and (hopefully) simplified way, previous results of Kuroda, Shestakov, Umirbaev and Wright, about the theory of reduction and the relations in Tame($\mathbf A^3$). The novelty in our presentation is the emphasis on a simply connected 2-dimensional simplicial complex on which Tame($\mathbf A^3$) acts by isometries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信