混合情绪分析的阿拉伯语推文使用R

S. Alhumoud, Tarfa Albuhairi, Wejdan Alohaideb
{"title":"混合情绪分析的阿拉伯语推文使用R","authors":"S. Alhumoud, Tarfa Albuhairi, Wejdan Alohaideb","doi":"10.5220/0005616204170424","DOIUrl":null,"url":null,"abstract":"Harvesting meaning out of massively increasing data could be of great value for organizations. Twitter is one of the biggest public and freely available data sources. This paper presents a Hybrid learning implementation to sentiment analysis combining lexicon and supervised approaches. Analysing Arabic, Saudi dialect Twitter tweets to extract sentiments toward a specific topic. This was done using a dataset consisting of 3000 tweets collected in three domains. The obtained results confirm the superiority of the hybrid learning approach over the supervised and unsupervised approaches.","PeriodicalId":102743,"journal":{"name":"2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Hybrid sentiment analyser for Arabic tweets using R\",\"authors\":\"S. Alhumoud, Tarfa Albuhairi, Wejdan Alohaideb\",\"doi\":\"10.5220/0005616204170424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Harvesting meaning out of massively increasing data could be of great value for organizations. Twitter is one of the biggest public and freely available data sources. This paper presents a Hybrid learning implementation to sentiment analysis combining lexicon and supervised approaches. Analysing Arabic, Saudi dialect Twitter tweets to extract sentiments toward a specific topic. This was done using a dataset consisting of 3000 tweets collected in three domains. The obtained results confirm the superiority of the hybrid learning approach over the supervised and unsupervised approaches.\",\"PeriodicalId\":102743,\"journal\":{\"name\":\"2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0005616204170424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005616204170424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

从大量增长的数据中获取意义对组织来说是非常有价值的。Twitter是最大的公共和免费数据来源之一。本文提出了一种结合词典和监督方法的情感分析混合学习实现。分析阿拉伯语、沙特语推特上的推文,提取对特定话题的情绪。这是使用一个数据集完成的,该数据集由从三个域中收集的3000条tweet组成。所得结果证实了混合学习方法相对于有监督和无监督学习方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid sentiment analyser for Arabic tweets using R
Harvesting meaning out of massively increasing data could be of great value for organizations. Twitter is one of the biggest public and freely available data sources. This paper presents a Hybrid learning implementation to sentiment analysis combining lexicon and supervised approaches. Analysing Arabic, Saudi dialect Twitter tweets to extract sentiments toward a specific topic. This was done using a dataset consisting of 3000 tweets collected in three domains. The obtained results confirm the superiority of the hybrid learning approach over the supervised and unsupervised approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信