识别具有最坏情况保证的不可预测的测试示例

S. Goldwasser, A. Kalai, Y. Kalai, Omar Montasser
{"title":"识别具有最坏情况保证的不可预测的测试示例","authors":"S. Goldwasser, A. Kalai, Y. Kalai, Omar Montasser","doi":"10.1109/ITA50056.2020.9244996","DOIUrl":null,"url":null,"abstract":"Often times, whether it be for adversarial or natural reasons, the distributions of test and training data differ. We give an algorithm that, given sets of training and test examples, identifies regions of test examples that cannot be predicted with low error. These regions are classified as ƒ or equivalently omitted from classification. Assuming only that labels are consistent with a family of classifiers of low VC dimension, the algorithm is shown to make few misclassification errors and few errors of omission in both adversarial and covariate-shift settings. Previous models of learning with different training and test distributions required assumptions connecting the two.","PeriodicalId":137257,"journal":{"name":"2020 Information Theory and Applications Workshop (ITA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying unpredictable test examples with worst-case guarantees\",\"authors\":\"S. Goldwasser, A. Kalai, Y. Kalai, Omar Montasser\",\"doi\":\"10.1109/ITA50056.2020.9244996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Often times, whether it be for adversarial or natural reasons, the distributions of test and training data differ. We give an algorithm that, given sets of training and test examples, identifies regions of test examples that cannot be predicted with low error. These regions are classified as ƒ or equivalently omitted from classification. Assuming only that labels are consistent with a family of classifiers of low VC dimension, the algorithm is shown to make few misclassification errors and few errors of omission in both adversarial and covariate-shift settings. Previous models of learning with different training and test distributions required assumptions connecting the two.\",\"PeriodicalId\":137257,\"journal\":{\"name\":\"2020 Information Theory and Applications Workshop (ITA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Information Theory and Applications Workshop (ITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA50056.2020.9244996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA50056.2020.9244996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通常情况下,无论是出于对抗还是自然原因,测试和训练数据的分布都是不同的。我们给出了一种算法,在给定训练和测试样例集的情况下,以低误差识别测试样例中无法预测的区域。这些区域被分类为f或从分类中省略。仅假设标签与一组低VC维的分类器一致,该算法在对抗和协变量移位设置下都很少出现误分类错误和遗漏错误。以前使用不同训练和测试分布的学习模型需要将两者连接起来的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying unpredictable test examples with worst-case guarantees
Often times, whether it be for adversarial or natural reasons, the distributions of test and training data differ. We give an algorithm that, given sets of training and test examples, identifies regions of test examples that cannot be predicted with low error. These regions are classified as ƒ or equivalently omitted from classification. Assuming only that labels are consistent with a family of classifiers of low VC dimension, the algorithm is shown to make few misclassification errors and few errors of omission in both adversarial and covariate-shift settings. Previous models of learning with different training and test distributions required assumptions connecting the two.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信