{"title":"Weyl流形切束上的Sasaki度规","authors":"C. Bejan, İlhan Gül","doi":"10.2298/PIM1817025B","DOIUrl":null,"url":null,"abstract":"Let (M, [g]) be a Weyl manifold of dimension m > 2. By using the Sasaki metric G induced by g, we construct a Weyl structure on T M . Then we prove that it is never Einstein–Weyl unless (M, g) is flat. The main theorem here extends to the Weyl context a result of Musso and Tricerri.","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sasaki metric on the tangent bundle of a Weyl manifold\",\"authors\":\"C. Bejan, İlhan Gül\",\"doi\":\"10.2298/PIM1817025B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let (M, [g]) be a Weyl manifold of dimension m > 2. By using the Sasaki metric G induced by g, we construct a Weyl structure on T M . Then we prove that it is never Einstein–Weyl unless (M, g) is flat. The main theorem here extends to the Weyl context a result of Musso and Tricerri.\",\"PeriodicalId\":416273,\"journal\":{\"name\":\"Publications De L'institut Mathematique\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications De L'institut Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/PIM1817025B\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM1817025B","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sasaki metric on the tangent bundle of a Weyl manifold
Let (M, [g]) be a Weyl manifold of dimension m > 2. By using the Sasaki metric G induced by g, we construct a Weyl structure on T M . Then we prove that it is never Einstein–Weyl unless (M, g) is flat. The main theorem here extends to the Weyl context a result of Musso and Tricerri.