Weyl流形切束上的Sasaki度规

C. Bejan, İlhan Gül
{"title":"Weyl流形切束上的Sasaki度规","authors":"C. Bejan, İlhan Gül","doi":"10.2298/PIM1817025B","DOIUrl":null,"url":null,"abstract":"Let (M, [g]) be a Weyl manifold of dimension m > 2. By using the Sasaki metric G induced by g, we construct a Weyl structure on T M . Then we prove that it is never Einstein–Weyl unless (M, g) is flat. The main theorem here extends to the Weyl context a result of Musso and Tricerri.","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sasaki metric on the tangent bundle of a Weyl manifold\",\"authors\":\"C. Bejan, İlhan Gül\",\"doi\":\"10.2298/PIM1817025B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let (M, [g]) be a Weyl manifold of dimension m > 2. By using the Sasaki metric G induced by g, we construct a Weyl structure on T M . Then we prove that it is never Einstein–Weyl unless (M, g) is flat. The main theorem here extends to the Weyl context a result of Musso and Tricerri.\",\"PeriodicalId\":416273,\"journal\":{\"name\":\"Publications De L'institut Mathematique\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications De L'institut Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/PIM1817025B\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM1817025B","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

设(M, [g])是维数M > 2的Weyl流形。利用由G诱导的Sasaki度量G,我们在T M上构造了一个Weyl结构。然后我们证明除非(M, g)是平的,否则它永远不是爱因斯坦-魏尔方程。这里的主要定理是由Musso和Tricerri的结果扩展到Weyl的上下文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sasaki metric on the tangent bundle of a Weyl manifold
Let (M, [g]) be a Weyl manifold of dimension m > 2. By using the Sasaki metric G induced by g, we construct a Weyl structure on T M . Then we prove that it is never Einstein–Weyl unless (M, g) is flat. The main theorem here extends to the Weyl context a result of Musso and Tricerri.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信