自主导航中的操作性条件反射模型

Huang Jing, Ruan Xiaogang, Xiao Yao, Z. Xiaoping, Liu Xiaoyang
{"title":"自主导航中的操作性条件反射模型","authors":"Huang Jing, Ruan Xiaogang, Xiao Yao, Z. Xiaoping, Liu Xiaoyang","doi":"10.1109/IAEAC.2015.7428710","DOIUrl":null,"url":null,"abstract":"To solve the navigation problem for mobile robots, we present a model based on the operant conditioning mechanism (OCM). 8 elements consist of the model, including state set, action set, learning mechanism and system entropy etc. As the core of the model, the learning mechanism is in accordance with operant conditioning principles, which makes agents learn the actions with reward and avoid the actions without reward. We test the model's function in several ways and change the simulation platform and environment map. The results in both experiments show that the proposed model is effective.","PeriodicalId":398100,"journal":{"name":"2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","volume":"60 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operant conditioning model in autonomous navigation\",\"authors\":\"Huang Jing, Ruan Xiaogang, Xiao Yao, Z. Xiaoping, Liu Xiaoyang\",\"doi\":\"10.1109/IAEAC.2015.7428710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve the navigation problem for mobile robots, we present a model based on the operant conditioning mechanism (OCM). 8 elements consist of the model, including state set, action set, learning mechanism and system entropy etc. As the core of the model, the learning mechanism is in accordance with operant conditioning principles, which makes agents learn the actions with reward and avoid the actions without reward. We test the model's function in several ways and change the simulation platform and environment map. The results in both experiments show that the proposed model is effective.\",\"PeriodicalId\":398100,\"journal\":{\"name\":\"2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)\",\"volume\":\"60 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAEAC.2015.7428710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAEAC.2015.7428710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了解决移动机器人的导航问题,我们提出了一个基于操作性条件反射机制(OCM)的模型。模型由8个元素组成,包括状态集、动作集、学习机制和系统熵等。作为模型的核心,学习机制遵循操作性条件反射原则,使智能体学习有奖励的行为,避免无奖励的行为。我们通过多种方式测试了模型的功能,并改变了仿真平台和环境图。实验结果表明,该模型是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Operant conditioning model in autonomous navigation
To solve the navigation problem for mobile robots, we present a model based on the operant conditioning mechanism (OCM). 8 elements consist of the model, including state set, action set, learning mechanism and system entropy etc. As the core of the model, the learning mechanism is in accordance with operant conditioning principles, which makes agents learn the actions with reward and avoid the actions without reward. We test the model's function in several ways and change the simulation platform and environment map. The results in both experiments show that the proposed model is effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信