激光增材再制造熔池流动及表面形貌的数值分析

Wei-Wei Liu, Yongxin Zhao, Huanqiang Liu, Bingjun Liu, Tao Li, Shujie Liu
{"title":"激光增材再制造熔池流动及表面形貌的数值分析","authors":"Wei-Wei Liu, Yongxin Zhao, Huanqiang Liu, Bingjun Liu, Tao Li, Shujie Liu","doi":"10.20517/gmo.2023.03","DOIUrl":null,"url":null,"abstract":"Laser additive remanufacturing technology is an important technology in the field of manufacturing technology innovation and development, which has largely revolutionized the design and manufacturing mode of high-end devices to a large extent, and is a key component of green remanufacturing that can effectively promote the sustainable and sound development of the manufacturing industry. A multiphase model of laser additive remanufacturing with pulsed lasers is developed to analyze the evolution of the molten pool, the trend of the surface tension for different process parameters, and their relation to the molten pool morphology. The results demonstrate that the maximum flow velocity at the surface of the molten pool is inversely proportional to the pulsed laser frequency and to the duty ratio. While the trend of the height of the cladding layer corresponds to the trend of the heat accumulation in the molten pool, the width and penetration depth of the cladding layer are governed by the size of the heat-affected zone. The cladding layer and substrate will have poor metallurgical bonding if the pulsed laser frequency is too high. When the duty ratio is too large, the likelihood of over-melting increases, affecting the substrate properties and increasing the surface roughness, which is detrimental to the surface finish of the cladding layer.","PeriodicalId":178988,"journal":{"name":"Green Manufacturing Open","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical analysis on flow and surface topography of the molten pool in laser additive remanufacturing\",\"authors\":\"Wei-Wei Liu, Yongxin Zhao, Huanqiang Liu, Bingjun Liu, Tao Li, Shujie Liu\",\"doi\":\"10.20517/gmo.2023.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Laser additive remanufacturing technology is an important technology in the field of manufacturing technology innovation and development, which has largely revolutionized the design and manufacturing mode of high-end devices to a large extent, and is a key component of green remanufacturing that can effectively promote the sustainable and sound development of the manufacturing industry. A multiphase model of laser additive remanufacturing with pulsed lasers is developed to analyze the evolution of the molten pool, the trend of the surface tension for different process parameters, and their relation to the molten pool morphology. The results demonstrate that the maximum flow velocity at the surface of the molten pool is inversely proportional to the pulsed laser frequency and to the duty ratio. While the trend of the height of the cladding layer corresponds to the trend of the heat accumulation in the molten pool, the width and penetration depth of the cladding layer are governed by the size of the heat-affected zone. The cladding layer and substrate will have poor metallurgical bonding if the pulsed laser frequency is too high. When the duty ratio is too large, the likelihood of over-melting increases, affecting the substrate properties and increasing the surface roughness, which is detrimental to the surface finish of the cladding layer.\",\"PeriodicalId\":178988,\"journal\":{\"name\":\"Green Manufacturing Open\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Manufacturing Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/gmo.2023.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Manufacturing Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/gmo.2023.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

激光增材再制造技术是制造技术创新与发展领域的一项重要技术,在很大程度上彻底改变了高端器件的设计制造模式,是绿色再制造的关键组成部分,能够有效促进制造业的持续健康发展。建立了脉冲激光增材再制造的多相模型,分析了不同工艺参数下熔池的演变、表面张力的变化趋势及其与熔池形貌的关系。结果表明,熔池表面的最大流速与脉冲激光频率和占空比成反比。熔覆层高度的变化趋势与熔池内热积累的变化趋势相对应,熔覆层的宽度和穿透深度受热影响区的大小决定。如果脉冲激光频率过高,熔覆层与基材的冶金结合会很差。当占空比过大时,过熔的可能性增大,影响基体性能,增加表面粗糙度,不利于熔覆层的表面光洁度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical analysis on flow and surface topography of the molten pool in laser additive remanufacturing
Laser additive remanufacturing technology is an important technology in the field of manufacturing technology innovation and development, which has largely revolutionized the design and manufacturing mode of high-end devices to a large extent, and is a key component of green remanufacturing that can effectively promote the sustainable and sound development of the manufacturing industry. A multiphase model of laser additive remanufacturing with pulsed lasers is developed to analyze the evolution of the molten pool, the trend of the surface tension for different process parameters, and their relation to the molten pool morphology. The results demonstrate that the maximum flow velocity at the surface of the molten pool is inversely proportional to the pulsed laser frequency and to the duty ratio. While the trend of the height of the cladding layer corresponds to the trend of the heat accumulation in the molten pool, the width and penetration depth of the cladding layer are governed by the size of the heat-affected zone. The cladding layer and substrate will have poor metallurgical bonding if the pulsed laser frequency is too high. When the duty ratio is too large, the likelihood of over-melting increases, affecting the substrate properties and increasing the surface roughness, which is detrimental to the surface finish of the cladding layer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信