检测k-(次)节奏和等距子序列出现

Mitsuru Funakoshi, Yuto Nakashima, Shunsuke Inenaga, H. Bannai, M. Takeda, A. Shinohara
{"title":"检测k-(次)节奏和等距子序列出现","authors":"Mitsuru Funakoshi, Yuto Nakashima, Shunsuke Inenaga, H. Bannai, M. Takeda, A. Shinohara","doi":"10.4230/LIPIcs.CPM.2020.12","DOIUrl":null,"url":null,"abstract":"The equidistant subsequence pattern matching problem is considered. Given a pattern string $P$ and a text string $T$, we say that $P$ is an \\emph{equidistant subsequence} of $T$ if $P$ is a subsequence of the text such that consecutive symbols of $P$ in the occurrence are equally spaced. We can consider the problem of equidistant subsequences as generalizations of (sub-)cadences. We give bit-parallel algorithms that yield $o(n^2)$ time algorithms for finding $k$-(sub-)cadences and equidistant subsequences. Furthermore, $O(n\\log^2 n)$ and $O(n\\log n)$ time algorithms, respectively for equidistant and Abelian equidistant matching for the case $|P| = 3$, are shown. The algorithms make use of a technique that was recently introduced which can efficiently compute convolutions with linear constraints.","PeriodicalId":236737,"journal":{"name":"Annual Symposium on Combinatorial Pattern Matching","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detecting k-(Sub-)Cadences and Equidistant Subsequence Occurrences\",\"authors\":\"Mitsuru Funakoshi, Yuto Nakashima, Shunsuke Inenaga, H. Bannai, M. Takeda, A. Shinohara\",\"doi\":\"10.4230/LIPIcs.CPM.2020.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The equidistant subsequence pattern matching problem is considered. Given a pattern string $P$ and a text string $T$, we say that $P$ is an \\\\emph{equidistant subsequence} of $T$ if $P$ is a subsequence of the text such that consecutive symbols of $P$ in the occurrence are equally spaced. We can consider the problem of equidistant subsequences as generalizations of (sub-)cadences. We give bit-parallel algorithms that yield $o(n^2)$ time algorithms for finding $k$-(sub-)cadences and equidistant subsequences. Furthermore, $O(n\\\\log^2 n)$ and $O(n\\\\log n)$ time algorithms, respectively for equidistant and Abelian equidistant matching for the case $|P| = 3$, are shown. The algorithms make use of a technique that was recently introduced which can efficiently compute convolutions with linear constraints.\",\"PeriodicalId\":236737,\"journal\":{\"name\":\"Annual Symposium on Combinatorial Pattern Matching\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Symposium on Combinatorial Pattern Matching\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.CPM.2020.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Symposium on Combinatorial Pattern Matching","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CPM.2020.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究等距子序列模式匹配问题。给定一个模式字符串$P$和一个文本字符串$T$,我们说$P$是$T$的\emph{等距子}序列,如果$P$是文本的子序列,使得$P$的连续符号在出现时间隔相等。我们可以把等距子序列问题看作(子)节奏的一般化。我们给出了位并行算法,该算法产生$o(n^2)$时间算法,用于查找$k$ -(子)节奏和等距子序列。此外,还分别给出了$|P| = 3$情况下等距匹配和阿贝尔等距匹配的$O(n\log^2 n)$和$O(n\log n)$时间算法。该算法利用了最近引入的一种技术,该技术可以有效地计算线性约束下的卷积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting k-(Sub-)Cadences and Equidistant Subsequence Occurrences
The equidistant subsequence pattern matching problem is considered. Given a pattern string $P$ and a text string $T$, we say that $P$ is an \emph{equidistant subsequence} of $T$ if $P$ is a subsequence of the text such that consecutive symbols of $P$ in the occurrence are equally spaced. We can consider the problem of equidistant subsequences as generalizations of (sub-)cadences. We give bit-parallel algorithms that yield $o(n^2)$ time algorithms for finding $k$-(sub-)cadences and equidistant subsequences. Furthermore, $O(n\log^2 n)$ and $O(n\log n)$ time algorithms, respectively for equidistant and Abelian equidistant matching for the case $|P| = 3$, are shown. The algorithms make use of a technique that was recently introduced which can efficiently compute convolutions with linear constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信