历史文献文字、字型、位置分类的自监督学习研究

Johan Zenk, Florian Kordon, Martin Mayr, Mathias Seuret, V. Christlein
{"title":"历史文献文字、字型、位置分类的自监督学习研究","authors":"Johan Zenk, Florian Kordon, Martin Mayr, Mathias Seuret, V. Christlein","doi":"10.1145/3604951.3605519","DOIUrl":null,"url":null,"abstract":"In the context of automated classification of historical documents, we investigate three contemporary self-supervised learning (SSL) techniques (SimSiam, Dino, and VICReg) for the pre-training of three different document analysis tasks, namely script-type, font-type, and location classification. Our study draws samples from multiple datasets that contain images of manuscripts, prints, charters, and letters. The representations derived via pre-text training are taken as inputs for k-NN classification and a parametric linear classifier. The latter is placed atop the pre-trained backbones to enable fine-tuning of the entire network to further improve the classification by exploiting task-specific label data. The network’s final performance is assessed via independent test sets obtained from the ICDAR2021 Competition on Historical Document Classification. We empirically show that representations learned with SSL are significantly better suited for subsequent document classification than features generated by commonly used transfer learning on ImageNet.","PeriodicalId":375632,"journal":{"name":"Proceedings of the 7th International Workshop on Historical Document Imaging and Processing","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigations on Self-supervised Learning for Script-, Font-type, and Location Classification on Historical Documents\",\"authors\":\"Johan Zenk, Florian Kordon, Martin Mayr, Mathias Seuret, V. Christlein\",\"doi\":\"10.1145/3604951.3605519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of automated classification of historical documents, we investigate three contemporary self-supervised learning (SSL) techniques (SimSiam, Dino, and VICReg) for the pre-training of three different document analysis tasks, namely script-type, font-type, and location classification. Our study draws samples from multiple datasets that contain images of manuscripts, prints, charters, and letters. The representations derived via pre-text training are taken as inputs for k-NN classification and a parametric linear classifier. The latter is placed atop the pre-trained backbones to enable fine-tuning of the entire network to further improve the classification by exploiting task-specific label data. The network’s final performance is assessed via independent test sets obtained from the ICDAR2021 Competition on Historical Document Classification. We empirically show that representations learned with SSL are significantly better suited for subsequent document classification than features generated by commonly used transfer learning on ImageNet.\",\"PeriodicalId\":375632,\"journal\":{\"name\":\"Proceedings of the 7th International Workshop on Historical Document Imaging and Processing\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th International Workshop on Historical Document Imaging and Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3604951.3605519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Workshop on Historical Document Imaging and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3604951.3605519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在历史文档自动分类的背景下,我们研究了三种当代自我监督学习(SSL)技术(SimSiam、Dino和VICReg),用于三种不同文档分析任务的预训练,即脚本类型、字体类型和位置分类。我们的研究从包含手稿、印刷品、宪章和信件图像的多个数据集中抽取样本。通过文本前训练得到的表示作为k-NN分类和参数线性分类器的输入。后者放置在预训练的骨干网之上,以便对整个网络进行微调,从而通过利用特定于任务的标签数据进一步改进分类。网络的最终性能通过从ICDAR2021历史文档分类竞赛中获得的独立测试集进行评估。我们的经验表明,与ImageNet上常用的迁移学习生成的特征相比,使用SSL学习的表征明显更适合后续文档分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigations on Self-supervised Learning for Script-, Font-type, and Location Classification on Historical Documents
In the context of automated classification of historical documents, we investigate three contemporary self-supervised learning (SSL) techniques (SimSiam, Dino, and VICReg) for the pre-training of three different document analysis tasks, namely script-type, font-type, and location classification. Our study draws samples from multiple datasets that contain images of manuscripts, prints, charters, and letters. The representations derived via pre-text training are taken as inputs for k-NN classification and a parametric linear classifier. The latter is placed atop the pre-trained backbones to enable fine-tuning of the entire network to further improve the classification by exploiting task-specific label data. The network’s final performance is assessed via independent test sets obtained from the ICDAR2021 Competition on Historical Document Classification. We empirically show that representations learned with SSL are significantly better suited for subsequent document classification than features generated by commonly used transfer learning on ImageNet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信