用SWENSE方法耦合势波模型和两相求解器的研究进展

Zhaobin Li, B. Bouscasse, L. Gentaz, G. Ducrozet, P. Ferrant
{"title":"用SWENSE方法耦合势波模型和两相求解器的研究进展","authors":"Zhaobin Li, B. Bouscasse, L. Gentaz, G. Ducrozet, P. Ferrant","doi":"10.1115/OMAE2018-77466","DOIUrl":null,"url":null,"abstract":"This paper presents the recent developments of the Spectral Wave Explicit Navier-Stokes Equations (SWENSE) method to extend its range of application to two-phase VOF solvers. The SWENSE method solves the wave-structure interaction problem by coupling potential theory and the Navier-Stokes (NS) equations. It evaluates the incident wave solution by wave models based on potential theory in the entire computational domain, leaving only the perturbation caused by the structure and the influence of the viscosity to be solved with CFD. The method was proven in previous studies to be accurate and efficient for wave-structure interaction problems, but it was derived for single-phase NS solvers only. The present study extends the SWENSE method by proposing a novel formulation which is convenient to implement in two-phase NS solvers. A customized SWENSE solver is developed with the open source CFD package Open-FOAM. An improvement in accuracy and stability is observed in wave simulations compared with conventional two-phase VOF solvers. The horizontal force on a vertical cylinder in regular waves is also calculated. First results show a good agreement with the experiment on the first harmonic component.","PeriodicalId":106551,"journal":{"name":"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics","volume":"16 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Progress in Coupling Potential Wave Models and Two-Phase Solvers With the SWENSE Methodology\",\"authors\":\"Zhaobin Li, B. Bouscasse, L. Gentaz, G. Ducrozet, P. Ferrant\",\"doi\":\"10.1115/OMAE2018-77466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the recent developments of the Spectral Wave Explicit Navier-Stokes Equations (SWENSE) method to extend its range of application to two-phase VOF solvers. The SWENSE method solves the wave-structure interaction problem by coupling potential theory and the Navier-Stokes (NS) equations. It evaluates the incident wave solution by wave models based on potential theory in the entire computational domain, leaving only the perturbation caused by the structure and the influence of the viscosity to be solved with CFD. The method was proven in previous studies to be accurate and efficient for wave-structure interaction problems, but it was derived for single-phase NS solvers only. The present study extends the SWENSE method by proposing a novel formulation which is convenient to implement in two-phase NS solvers. A customized SWENSE solver is developed with the open source CFD package Open-FOAM. An improvement in accuracy and stability is observed in wave simulations compared with conventional two-phase VOF solvers. The horizontal force on a vertical cylinder in regular waves is also calculated. First results show a good agreement with the experiment on the first harmonic component.\",\"PeriodicalId\":106551,\"journal\":{\"name\":\"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics\",\"volume\":\"16 9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/OMAE2018-77466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/OMAE2018-77466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文介绍了谱波显式Navier-Stokes方程(SWENSE)方法的最新进展,将其应用范围扩展到两相VOF求解。SWENSE方法利用耦合势理论和Navier-Stokes (NS)方程求解波-结构相互作用问题。在整个计算域内用基于势理论的波动模型对入射波解进行评估,只留下结构引起的扰动和黏度的影响用CFD求解。该方法在以往的研究中被证明是准确和有效的,但它只适用于单相NS求解。本研究通过提出一种便于在两相NS求解器中实现的新公式,扩展了SWENSE方法。使用开源CFD软件包open - foam开发了定制的SWENSE求解器。与传统的两相VOF求解器相比,波浪模拟的精度和稳定性得到了提高。计算了竖直圆柱在规则波浪中的水平力。初步计算结果与实验结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Progress in Coupling Potential Wave Models and Two-Phase Solvers With the SWENSE Methodology
This paper presents the recent developments of the Spectral Wave Explicit Navier-Stokes Equations (SWENSE) method to extend its range of application to two-phase VOF solvers. The SWENSE method solves the wave-structure interaction problem by coupling potential theory and the Navier-Stokes (NS) equations. It evaluates the incident wave solution by wave models based on potential theory in the entire computational domain, leaving only the perturbation caused by the structure and the influence of the viscosity to be solved with CFD. The method was proven in previous studies to be accurate and efficient for wave-structure interaction problems, but it was derived for single-phase NS solvers only. The present study extends the SWENSE method by proposing a novel formulation which is convenient to implement in two-phase NS solvers. A customized SWENSE solver is developed with the open source CFD package Open-FOAM. An improvement in accuracy and stability is observed in wave simulations compared with conventional two-phase VOF solvers. The horizontal force on a vertical cylinder in regular waves is also calculated. First results show a good agreement with the experiment on the first harmonic component.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信