一种鲁棒EKF水下目标跟踪预滤波方法

F. el-Hawary, Yuyang Jing
{"title":"一种鲁棒EKF水下目标跟踪预滤波方法","authors":"F. el-Hawary, Yuyang Jing","doi":"10.1109/OCEANS.1993.326098","DOIUrl":null,"url":null,"abstract":"A robust approach to solving the passive underwater target tracking problem based on the extended Kalman filtering (ERF) is proposed in this paper. The conventional method based on the assumption of Gaussian noise statistics is not robust in many instances and the resulting filter is likely to diverge even for the slightest deviation from the Gaussian assumption. The proposed approach involves pre-processing of data using a robust M-estimate pre-filter. Monte Carlo simulation results for test cases involving heavy-tailed contaminated observation noise demonstrate the robustness of the proposed estimation procedure.<<ETX>>","PeriodicalId":130255,"journal":{"name":"Proceedings of OCEANS '93","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A robust pre-filtering approach to EKF underwater target tracking\",\"authors\":\"F. el-Hawary, Yuyang Jing\",\"doi\":\"10.1109/OCEANS.1993.326098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A robust approach to solving the passive underwater target tracking problem based on the extended Kalman filtering (ERF) is proposed in this paper. The conventional method based on the assumption of Gaussian noise statistics is not robust in many instances and the resulting filter is likely to diverge even for the slightest deviation from the Gaussian assumption. The proposed approach involves pre-processing of data using a robust M-estimate pre-filter. Monte Carlo simulation results for test cases involving heavy-tailed contaminated observation noise demonstrate the robustness of the proposed estimation procedure.<<ETX>>\",\"PeriodicalId\":130255,\"journal\":{\"name\":\"Proceedings of OCEANS '93\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of OCEANS '93\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANS.1993.326098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of OCEANS '93","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS.1993.326098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种基于扩展卡尔曼滤波(ERF)的无源水下目标跟踪鲁棒方法。传统的基于高斯噪声统计假设的方法在许多情况下不具有鲁棒性,并且即使与高斯假设稍有偏差,所得到的滤波器也可能发散。所提出的方法包括使用稳健的m估计预滤波器对数据进行预处理。对含有重尾污染观测噪声的测试用例进行了蒙特卡罗仿真,结果表明了所提估计方法的鲁棒性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A robust pre-filtering approach to EKF underwater target tracking
A robust approach to solving the passive underwater target tracking problem based on the extended Kalman filtering (ERF) is proposed in this paper. The conventional method based on the assumption of Gaussian noise statistics is not robust in many instances and the resulting filter is likely to diverge even for the slightest deviation from the Gaussian assumption. The proposed approach involves pre-processing of data using a robust M-estimate pre-filter. Monte Carlo simulation results for test cases involving heavy-tailed contaminated observation noise demonstrate the robustness of the proposed estimation procedure.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信