一种基于决策树的入侵检测方法

Yongjin Liu, Na Li, Leina Shi, Fangping Li
{"title":"一种基于决策树的入侵检测方法","authors":"Yongjin Liu, Na Li, Leina Shi, Fangping Li","doi":"10.1109/EDT.2010.5496597","DOIUrl":null,"url":null,"abstract":"How to find the intrusion behaviors is a problem that troubled the intrusion detection field for years. Until now, there is not a good method to solve it, epically in a realistic context. Most methods are effective on small data sets, but when used to the massive data of IDS, the effectiveness seems to be unsatisfactory. In this paper, a new method based on decision tree is discussed to solve the problem of low detection rate of massive data.","PeriodicalId":325767,"journal":{"name":"2010 International Conference on E-Health Networking Digital Ecosystems and Technologies (EDT)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"An intrusion detection method based on decision tree\",\"authors\":\"Yongjin Liu, Na Li, Leina Shi, Fangping Li\",\"doi\":\"10.1109/EDT.2010.5496597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How to find the intrusion behaviors is a problem that troubled the intrusion detection field for years. Until now, there is not a good method to solve it, epically in a realistic context. Most methods are effective on small data sets, but when used to the massive data of IDS, the effectiveness seems to be unsatisfactory. In this paper, a new method based on decision tree is discussed to solve the problem of low detection rate of massive data.\",\"PeriodicalId\":325767,\"journal\":{\"name\":\"2010 International Conference on E-Health Networking Digital Ecosystems and Technologies (EDT)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on E-Health Networking Digital Ecosystems and Technologies (EDT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDT.2010.5496597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on E-Health Networking Digital Ecosystems and Technologies (EDT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDT.2010.5496597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

如何发现入侵行为是困扰入侵检测领域多年的问题。到目前为止,还没有一个很好的方法来解决这个问题,特别是在现实环境中。大多数方法在小数据集上是有效的,但当用于IDS的海量数据时,效果似乎不尽如人意。针对海量数据检测率低的问题,提出了一种基于决策树的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An intrusion detection method based on decision tree
How to find the intrusion behaviors is a problem that troubled the intrusion detection field for years. Until now, there is not a good method to solve it, epically in a realistic context. Most methods are effective on small data sets, but when used to the massive data of IDS, the effectiveness seems to be unsatisfactory. In this paper, a new method based on decision tree is discussed to solve the problem of low detection rate of massive data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信