高性能复合纱手套抗剪、耐磨性能的对比研究

N. Akhtar, M. Malik, A. Bakkar
{"title":"高性能复合纱手套抗剪、耐磨性能的对比研究","authors":"N. Akhtar, M. Malik, A. Bakkar","doi":"10.24949/njes.v11i2.327","DOIUrl":null,"url":null,"abstract":"Cut resistant gloves are generally made from different types of high performance composite yarns. To achieve a certain level of cut resistance, material type, material composition and yarn linear density are changed which however make it sometimes difficult to decide the most suitable combination of the materials. In this work, eighteen seamless gloves were made by using core and sheath friction-spun yarns of various linear densities and core types, and their cut resistance performances were compared.For this purpose, eighteen composite yarns with three linear densities i.e. 118 tex (Ne 5), 98 tex (Ne 6) and 84 tex (Ne 7) were made on a friction spinning machine by using 5.55tex (50 denier), 11.11 tex (100 denier), 16.66 tex (150 denier), 33.33 tex (300 denier) multifilament glass yarns, and 89 denier (40 micron) and 139 denier (50 micron) monofilament steel yarn as core and Kevlar®29 staple fiber as sheath. Mechanical tests of the yarns showed that the tensile strength and tenacity of yarns increased as the linear density of glass yarns increased, whereas elongation at break and time to break increased with an increase of linear density of steel monofilament yarn. Coefficient of friction of all the yarns did not show any significant trend. Abrasion and cut resistance of the gloves made from 118 tex (Ne 5) composite yarn with 5.55tex (50 denier) glass yarn as core showed the best results, whereas no significant difference was seen in the dexterity of all the gloves.","PeriodicalId":338631,"journal":{"name":"NUST Journal of Engineering Sciences","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative study of cut and abrasion resistance performance of gloves made from high performance composite yarns\",\"authors\":\"N. Akhtar, M. Malik, A. Bakkar\",\"doi\":\"10.24949/njes.v11i2.327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cut resistant gloves are generally made from different types of high performance composite yarns. To achieve a certain level of cut resistance, material type, material composition and yarn linear density are changed which however make it sometimes difficult to decide the most suitable combination of the materials. In this work, eighteen seamless gloves were made by using core and sheath friction-spun yarns of various linear densities and core types, and their cut resistance performances were compared.For this purpose, eighteen composite yarns with three linear densities i.e. 118 tex (Ne 5), 98 tex (Ne 6) and 84 tex (Ne 7) were made on a friction spinning machine by using 5.55tex (50 denier), 11.11 tex (100 denier), 16.66 tex (150 denier), 33.33 tex (300 denier) multifilament glass yarns, and 89 denier (40 micron) and 139 denier (50 micron) monofilament steel yarn as core and Kevlar®29 staple fiber as sheath. Mechanical tests of the yarns showed that the tensile strength and tenacity of yarns increased as the linear density of glass yarns increased, whereas elongation at break and time to break increased with an increase of linear density of steel monofilament yarn. Coefficient of friction of all the yarns did not show any significant trend. Abrasion and cut resistance of the gloves made from 118 tex (Ne 5) composite yarn with 5.55tex (50 denier) glass yarn as core showed the best results, whereas no significant difference was seen in the dexterity of all the gloves.\",\"PeriodicalId\":338631,\"journal\":{\"name\":\"NUST Journal of Engineering Sciences\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NUST Journal of Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24949/njes.v11i2.327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NUST Journal of Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24949/njes.v11i2.327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

抗剪手套一般由不同类型的高性能复合纱线制成。为了达到一定程度的抗剪性,需要改变材料类型、材料成分和纱线线密度,但有时很难确定最合适的材料组合。本文采用不同线密度和芯型的芯和鞘摩擦纺纱制作了18只无缝手套,并对其抗剪性能进行了比较。为此,以5.55tex(50旦)、11.11 tex(100旦)、16.66 tex(150旦)、33.33 tex(300旦)多长丝玻璃纱和89旦(40微米)、139旦(50微米)单丝钢纱为芯,凯夫拉®29短纤维为护套,在摩擦纺丝机上纺制出线密度分别为118 tex (ne5)、98 tex (ne6)和84 tex (ne7)的复合纱线。纱线力学性能测试表明,玻璃丝的抗拉强度和韧性随线密度的增加而增加,而钢单丝的断裂伸长率和断裂时间随线密度的增加而增加。各纱线的摩擦系数没有明显的变化趋势。以5.55tex(50旦)玻璃纱为包芯的118 tex (ne5)复合纱制成的手套耐磨性和抗割伤性最好,而所有手套的灵巧性无显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative study of cut and abrasion resistance performance of gloves made from high performance composite yarns
Cut resistant gloves are generally made from different types of high performance composite yarns. To achieve a certain level of cut resistance, material type, material composition and yarn linear density are changed which however make it sometimes difficult to decide the most suitable combination of the materials. In this work, eighteen seamless gloves were made by using core and sheath friction-spun yarns of various linear densities and core types, and their cut resistance performances were compared.For this purpose, eighteen composite yarns with three linear densities i.e. 118 tex (Ne 5), 98 tex (Ne 6) and 84 tex (Ne 7) were made on a friction spinning machine by using 5.55tex (50 denier), 11.11 tex (100 denier), 16.66 tex (150 denier), 33.33 tex (300 denier) multifilament glass yarns, and 89 denier (40 micron) and 139 denier (50 micron) monofilament steel yarn as core and Kevlar®29 staple fiber as sheath. Mechanical tests of the yarns showed that the tensile strength and tenacity of yarns increased as the linear density of glass yarns increased, whereas elongation at break and time to break increased with an increase of linear density of steel monofilament yarn. Coefficient of friction of all the yarns did not show any significant trend. Abrasion and cut resistance of the gloves made from 118 tex (Ne 5) composite yarn with 5.55tex (50 denier) glass yarn as core showed the best results, whereas no significant difference was seen in the dexterity of all the gloves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信