短期负荷预测的ARMAX模型识别:一种进化规划方法

Hong-Tzer Yang, Chao-Ming Huang, C. Huang
{"title":"短期负荷预测的ARMAX模型识别:一种进化规划方法","authors":"Hong-Tzer Yang, Chao-Ming Huang, C. Huang","doi":"10.1109/PICA.1995.515202","DOIUrl":null,"url":null,"abstract":"This paper proposes a new evolutionary programming (EP) approach to identify the autoregressive moving average with exogenous variable (ARMAX) model for one day to one week ahead hourly load demand forecasts. Typically, the surface of forecasting error function possesses multiple local minimum points. Solutions of the traditional gradient search based identification technique therefore may stall at the local optimal points which lead to an inadequate model. By simulating a natural evolutionary process, the EP algorithm offers the capability of converging towards the global extremum of a complex error surface. The developed EP based load forecasting algorithm is verified by using different types of data for the Taiwan Power (Taipower) system and substation load as well as temperature values. Numerical results indicate the proposed EP approach provides a method to simultaneously estimate the appropriate order and parameter values of the ARMAX model for diverse types of load data. Comparisons of forecasting errors are made to the traditional identification techniques.","PeriodicalId":294493,"journal":{"name":"Proceedings of Power Industry Computer Applications Conference","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"204","resultStr":"{\"title\":\"Identification of ARMAX model for short term load forecasting: an evolutionary programming approach\",\"authors\":\"Hong-Tzer Yang, Chao-Ming Huang, C. Huang\",\"doi\":\"10.1109/PICA.1995.515202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new evolutionary programming (EP) approach to identify the autoregressive moving average with exogenous variable (ARMAX) model for one day to one week ahead hourly load demand forecasts. Typically, the surface of forecasting error function possesses multiple local minimum points. Solutions of the traditional gradient search based identification technique therefore may stall at the local optimal points which lead to an inadequate model. By simulating a natural evolutionary process, the EP algorithm offers the capability of converging towards the global extremum of a complex error surface. The developed EP based load forecasting algorithm is verified by using different types of data for the Taiwan Power (Taipower) system and substation load as well as temperature values. Numerical results indicate the proposed EP approach provides a method to simultaneously estimate the appropriate order and parameter values of the ARMAX model for diverse types of load data. Comparisons of forecasting errors are made to the traditional identification techniques.\",\"PeriodicalId\":294493,\"journal\":{\"name\":\"Proceedings of Power Industry Computer Applications Conference\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"204\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Power Industry Computer Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PICA.1995.515202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Power Industry Computer Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PICA.1995.515202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 204

摘要

本文提出了一种新的进化规划(EP)方法,用于识别一天到一周前的小时负荷需求预测的带外生变量的自回归移动平均(ARMAX)模型。通常,预测误差函数的曲面具有多个局部极小点。因此,传统的基于梯度搜索的辨识方法可能会在局部最优点处停滞不前,从而导致模型不充分。通过模拟自然进化过程,EP算法具有向复杂误差曲面的全局极值收敛的能力。利用台湾电力系统、变电站负荷及温度值的不同类型数据,验证了基于EP的负荷预测算法。数值结果表明,该方法提供了一种同时估计不同负荷类型下ARMAX模型的合适阶数和参数值的方法。将预测误差与传统识别技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of ARMAX model for short term load forecasting: an evolutionary programming approach
This paper proposes a new evolutionary programming (EP) approach to identify the autoregressive moving average with exogenous variable (ARMAX) model for one day to one week ahead hourly load demand forecasts. Typically, the surface of forecasting error function possesses multiple local minimum points. Solutions of the traditional gradient search based identification technique therefore may stall at the local optimal points which lead to an inadequate model. By simulating a natural evolutionary process, the EP algorithm offers the capability of converging towards the global extremum of a complex error surface. The developed EP based load forecasting algorithm is verified by using different types of data for the Taiwan Power (Taipower) system and substation load as well as temperature values. Numerical results indicate the proposed EP approach provides a method to simultaneously estimate the appropriate order and parameter values of the ARMAX model for diverse types of load data. Comparisons of forecasting errors are made to the traditional identification techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信