基于云计算环境的长期护理知识融合

Kai-Xiang Zhuang, I-Ching Hsu
{"title":"基于云计算环境的长期护理知识融合","authors":"Kai-Xiang Zhuang, I-Ching Hsu","doi":"10.4018/IJHISI.2020100103","DOIUrl":null,"url":null,"abstract":"Globally, aging is now a societal trend and challenge in many developed and developing countries. A key medical strategy that a fast-paced aging society must consider is the provision of quality long-term care (LTC) services. Even so, the lack of LTC caregivers is a persistent global problem. Herein, attention is called to the increasing need for identifying appropriate LTC caregivers and delivering client-specific LTC services to the elderly via emerging and integrative technologies. This paper argues for the use of an intelligent cloud computing long-term care platform (ICCLCP) that integrates statistical analysis, machine learning, and Semantic Web technologies into a cloud-computing environment to facilitate LTC services delivery. The Term frequency-inverse document frequency is a numerical statistic adopted to automatically assess the professionalism of each LTC caregiver's services. The machine learning method adopts naïve Bayes classifier to estimate the LTC services needed for the elderly. These two items of LTC information are integrated with the Semantic Web to provide an intelligent LTC framework. The deployed ICCLCP will then aid the elderly in the recommendation of LTC caregivers, thereby making the best use of available resources for LTC services.","PeriodicalId":101861,"journal":{"name":"Int. J. Heal. Inf. Syst. Informatics","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knowledge Fusion Based on Cloud Computing Environment for Long-Term Care\",\"authors\":\"Kai-Xiang Zhuang, I-Ching Hsu\",\"doi\":\"10.4018/IJHISI.2020100103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Globally, aging is now a societal trend and challenge in many developed and developing countries. A key medical strategy that a fast-paced aging society must consider is the provision of quality long-term care (LTC) services. Even so, the lack of LTC caregivers is a persistent global problem. Herein, attention is called to the increasing need for identifying appropriate LTC caregivers and delivering client-specific LTC services to the elderly via emerging and integrative technologies. This paper argues for the use of an intelligent cloud computing long-term care platform (ICCLCP) that integrates statistical analysis, machine learning, and Semantic Web technologies into a cloud-computing environment to facilitate LTC services delivery. The Term frequency-inverse document frequency is a numerical statistic adopted to automatically assess the professionalism of each LTC caregiver's services. The machine learning method adopts naïve Bayes classifier to estimate the LTC services needed for the elderly. These two items of LTC information are integrated with the Semantic Web to provide an intelligent LTC framework. The deployed ICCLCP will then aid the elderly in the recommendation of LTC caregivers, thereby making the best use of available resources for LTC services.\",\"PeriodicalId\":101861,\"journal\":{\"name\":\"Int. J. Heal. Inf. Syst. Informatics\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Heal. Inf. Syst. Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJHISI.2020100103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Heal. Inf. Syst. Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJHISI.2020100103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在全球范围内,老龄化在许多发达国家和发展中国家都是一种社会趋势和挑战。快速老龄化社会必须考虑的一项关键医疗战略是提供高质量的长期护理服务。即便如此,缺乏长期护理人员是一个持续存在的全球性问题。在此,需要注意的是,越来越需要确定合适的LTC护理人员,并通过新兴和综合技术向老年人提供针对客户的LTC服务。本文主张使用智能云计算长期护理平台(ICCLCP),该平台将统计分析、机器学习和语义网技术集成到云计算环境中,以促进长期护理服务的提供。术语频率逆文件频率是一种数字统计,用于自动评估每个LTC护理人员服务的专业程度。机器学习方法采用naïve贝叶斯分类器来估计老年人所需的LTC服务。这两项LTC信息与语义Web集成,以提供智能LTC框架。部署的ICCLCP将帮助老年人推荐长期护理中心的护理人员,从而充分利用现有资源提供长期护理中心服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knowledge Fusion Based on Cloud Computing Environment for Long-Term Care
Globally, aging is now a societal trend and challenge in many developed and developing countries. A key medical strategy that a fast-paced aging society must consider is the provision of quality long-term care (LTC) services. Even so, the lack of LTC caregivers is a persistent global problem. Herein, attention is called to the increasing need for identifying appropriate LTC caregivers and delivering client-specific LTC services to the elderly via emerging and integrative technologies. This paper argues for the use of an intelligent cloud computing long-term care platform (ICCLCP) that integrates statistical analysis, machine learning, and Semantic Web technologies into a cloud-computing environment to facilitate LTC services delivery. The Term frequency-inverse document frequency is a numerical statistic adopted to automatically assess the professionalism of each LTC caregiver's services. The machine learning method adopts naïve Bayes classifier to estimate the LTC services needed for the elderly. These two items of LTC information are integrated with the Semantic Web to provide an intelligent LTC framework. The deployed ICCLCP will then aid the elderly in the recommendation of LTC caregivers, thereby making the best use of available resources for LTC services.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信