基于启发式遗传算法的流水车间调度

U. Chakraborty, D. Lah, M. Chakraborty
{"title":"基于启发式遗传算法的流水车间调度","authors":"U. Chakraborty, D. Lah, M. Chakraborty","doi":"10.1109/ITI.2001.938035","DOIUrl":null,"url":null,"abstract":"Flowshop scheduling deals with determining the optimum sequence of jobs to be processed on several machines so as to satisfy some scheduling criterion. It is NP-complete. Heuristic algorithms use problem-specific information to yield a good working solution. Genetic algorithms are stochastic, adaptive, general-purpose search heuristics based on concepts of natural evolution. We have developed a new heuristic genetic algorithm (NGA) which combines the good features of both the GA and heuristic search. The NGA is run on several problems and its performance is compared with that of the conventional genetic algorithm and the well-known NEH heuristic. The NGA is seen to perform better in almost all instances.","PeriodicalId":375405,"journal":{"name":"Proceedings of the 23rd International Conference on Information Technology Interfaces, 2001. ITI 2001.","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A heuristic genetic algorithm for flowshop scheduling\",\"authors\":\"U. Chakraborty, D. Lah, M. Chakraborty\",\"doi\":\"10.1109/ITI.2001.938035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flowshop scheduling deals with determining the optimum sequence of jobs to be processed on several machines so as to satisfy some scheduling criterion. It is NP-complete. Heuristic algorithms use problem-specific information to yield a good working solution. Genetic algorithms are stochastic, adaptive, general-purpose search heuristics based on concepts of natural evolution. We have developed a new heuristic genetic algorithm (NGA) which combines the good features of both the GA and heuristic search. The NGA is run on several problems and its performance is compared with that of the conventional genetic algorithm and the well-known NEH heuristic. The NGA is seen to perform better in almost all instances.\",\"PeriodicalId\":375405,\"journal\":{\"name\":\"Proceedings of the 23rd International Conference on Information Technology Interfaces, 2001. ITI 2001.\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd International Conference on Information Technology Interfaces, 2001. ITI 2001.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITI.2001.938035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd International Conference on Information Technology Interfaces, 2001. ITI 2001.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITI.2001.938035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

流程车间调度是指在多台机器上确定要处理的作业的最优顺序,以满足一定的调度准则。它是np完全的。启发式算法使用特定于问题的信息来产生良好的工作解决方案。遗传算法是基于自然进化概念的随机、自适应、通用搜索启发式算法。本文提出了一种新的启发式遗传算法(NGA),它结合了遗传算法和启发式搜索的优点。在若干问题上运行了NGA算法,并将其性能与传统遗传算法和著名的NEH启发式算法进行了比较。NGA在几乎所有情况下都表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A heuristic genetic algorithm for flowshop scheduling
Flowshop scheduling deals with determining the optimum sequence of jobs to be processed on several machines so as to satisfy some scheduling criterion. It is NP-complete. Heuristic algorithms use problem-specific information to yield a good working solution. Genetic algorithms are stochastic, adaptive, general-purpose search heuristics based on concepts of natural evolution. We have developed a new heuristic genetic algorithm (NGA) which combines the good features of both the GA and heuristic search. The NGA is run on several problems and its performance is compared with that of the conventional genetic algorithm and the well-known NEH heuristic. The NGA is seen to perform better in almost all instances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信