基于小波能量特征的不变内容图像检索

Chi-Man Pun
{"title":"基于小波能量特征的不变内容图像检索","authors":"Chi-Man Pun","doi":"10.1109/ICASSP.2003.1199537","DOIUrl":null,"url":null,"abstract":"An effective rotation and scale invariant log-polar wavelet texture feature for image retrieval was proposed. The feature extraction process involves a log-polar transform followed by an adaptive row shift invariant wavelet packet transform. The log-polar transform converts a given image into a rotation and scale invariant but row-shifted image, which is then passed to the adaptive row shift invariant wavelet packet transform to generate adaptively some subbands of rotation and scale invariant wavelet coefficients with respect to an information cost function. An energy signature is computed for each subband of these wavelet coefficients. In order to reduce feature dimensionality, only the most dominant log-polar wavelet energy signatures are selected as feature vector for image retrieval. The whole feature extraction process is quite efficient and involves only O(n/spl middot/log n) complexity. Experimental results show that this rotation and scale invariant texture feature is effective and outperforms the traditional wavelet packet signatures.","PeriodicalId":104473,"journal":{"name":"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Invariant content-based image retrieval by wavelet energy signatures\",\"authors\":\"Chi-Man Pun\",\"doi\":\"10.1109/ICASSP.2003.1199537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An effective rotation and scale invariant log-polar wavelet texture feature for image retrieval was proposed. The feature extraction process involves a log-polar transform followed by an adaptive row shift invariant wavelet packet transform. The log-polar transform converts a given image into a rotation and scale invariant but row-shifted image, which is then passed to the adaptive row shift invariant wavelet packet transform to generate adaptively some subbands of rotation and scale invariant wavelet coefficients with respect to an information cost function. An energy signature is computed for each subband of these wavelet coefficients. In order to reduce feature dimensionality, only the most dominant log-polar wavelet energy signatures are selected as feature vector for image retrieval. The whole feature extraction process is quite efficient and involves only O(n/spl middot/log n) complexity. Experimental results show that this rotation and scale invariant texture feature is effective and outperforms the traditional wavelet packet signatures.\",\"PeriodicalId\":104473,\"journal\":{\"name\":\"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2003.1199537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2003.1199537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种有效的旋转尺度不变对数极小波纹理特征。特征提取过程包括对数极坐标变换和自适应行移不变小波包变换。对数极变换将给定图像转换为旋转和尺度不变但行移的图像,然后将其传递给自适应行移不变小波包变换,以根据信息代价函数自适应地生成旋转和尺度不变小波系数的子带。计算这些小波系数的每个子带的能量特征。为了降低特征维数,只选取最具优势的对数极小波能量特征作为特征向量进行图像检索。整个特征提取过程非常高效,复杂度仅为O(n/spl middot/log n)。实验结果表明,这种旋转和尺度不变的纹理特征是有效的,并且优于传统的小波包签名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invariant content-based image retrieval by wavelet energy signatures
An effective rotation and scale invariant log-polar wavelet texture feature for image retrieval was proposed. The feature extraction process involves a log-polar transform followed by an adaptive row shift invariant wavelet packet transform. The log-polar transform converts a given image into a rotation and scale invariant but row-shifted image, which is then passed to the adaptive row shift invariant wavelet packet transform to generate adaptively some subbands of rotation and scale invariant wavelet coefficients with respect to an information cost function. An energy signature is computed for each subband of these wavelet coefficients. In order to reduce feature dimensionality, only the most dominant log-polar wavelet energy signatures are selected as feature vector for image retrieval. The whole feature extraction process is quite efficient and involves only O(n/spl middot/log n) complexity. Experimental results show that this rotation and scale invariant texture feature is effective and outperforms the traditional wavelet packet signatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信