{"title":"高能通量材料表面制造","authors":"S. Valkov, M. Ormanova, P. Petrov","doi":"10.5772/INTECHOPEN.79874","DOIUrl":null,"url":null,"abstract":"This chapter aims to summarize the topics related to the application of a surface treatment by high energy fluxes (i.e., electron and laser beams) for developing of new multifunctional materials, as well as to modify their surface properties. These technologies have a large number of applications in the field of automotive and aircraft industries for manufacturing of railways, space crafts, different tools, and components. Based on the performed literature review, some examples of the use of laser and electron beams for surface manufacturing (i.e., surface alloying, cladding, and hardening) are presented. The present overview describes the relationship between electron beam and laser beam technologies, microstructure, and the obtained functional properties of the materials. The benefits of the considered techniques are extensively discussed.","PeriodicalId":239715,"journal":{"name":"Advanced Surface Engineering Research","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Surface Manufacturing of Materials by High Energy Fluxes\",\"authors\":\"S. Valkov, M. Ormanova, P. Petrov\",\"doi\":\"10.5772/INTECHOPEN.79874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter aims to summarize the topics related to the application of a surface treatment by high energy fluxes (i.e., electron and laser beams) for developing of new multifunctional materials, as well as to modify their surface properties. These technologies have a large number of applications in the field of automotive and aircraft industries for manufacturing of railways, space crafts, different tools, and components. Based on the performed literature review, some examples of the use of laser and electron beams for surface manufacturing (i.e., surface alloying, cladding, and hardening) are presented. The present overview describes the relationship between electron beam and laser beam technologies, microstructure, and the obtained functional properties of the materials. The benefits of the considered techniques are extensively discussed.\",\"PeriodicalId\":239715,\"journal\":{\"name\":\"Advanced Surface Engineering Research\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Surface Engineering Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.79874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Surface Engineering Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.79874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Surface Manufacturing of Materials by High Energy Fluxes
This chapter aims to summarize the topics related to the application of a surface treatment by high energy fluxes (i.e., electron and laser beams) for developing of new multifunctional materials, as well as to modify their surface properties. These technologies have a large number of applications in the field of automotive and aircraft industries for manufacturing of railways, space crafts, different tools, and components. Based on the performed literature review, some examples of the use of laser and electron beams for surface manufacturing (i.e., surface alloying, cladding, and hardening) are presented. The present overview describes the relationship between electron beam and laser beam technologies, microstructure, and the obtained functional properties of the materials. The benefits of the considered techniques are extensively discussed.