{"title":"基于量化器的线性系统自适应事件触发控制","authors":"Haohao Chen, Y. Fan, Jun Chen, Lun Wang","doi":"10.1109/ISASS.2019.8757792","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an adaptive event-triggered control approach based on quantizer for linear systems. Firstly, an adaptive event-triggered mechanism is designed according to the state measurement error in order to reduce the number of information transmission and the occupation of communication bandwidth while ensuring the stability of the system. Secondly, a quantizer is used for reducing processing data and cutting down network congestion, which can improve the quality of control in a certain extent. Next, the co-design scheme of event-triggered mechanism and the controller is given to guarantee the asymptotically stability of the closed-loop system based on Lyapunov function and linear matrix inequality technique. Finally, a simulation example illustrates the efficiency of the presented method.","PeriodicalId":359959,"journal":{"name":"2019 3rd International Symposium on Autonomous Systems (ISAS)","volume":"34 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantizer-Based Adaptive Event-Triggered Control for Linear Systems\",\"authors\":\"Haohao Chen, Y. Fan, Jun Chen, Lun Wang\",\"doi\":\"10.1109/ISASS.2019.8757792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an adaptive event-triggered control approach based on quantizer for linear systems. Firstly, an adaptive event-triggered mechanism is designed according to the state measurement error in order to reduce the number of information transmission and the occupation of communication bandwidth while ensuring the stability of the system. Secondly, a quantizer is used for reducing processing data and cutting down network congestion, which can improve the quality of control in a certain extent. Next, the co-design scheme of event-triggered mechanism and the controller is given to guarantee the asymptotically stability of the closed-loop system based on Lyapunov function and linear matrix inequality technique. Finally, a simulation example illustrates the efficiency of the presented method.\",\"PeriodicalId\":359959,\"journal\":{\"name\":\"2019 3rd International Symposium on Autonomous Systems (ISAS)\",\"volume\":\"34 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 3rd International Symposium on Autonomous Systems (ISAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISASS.2019.8757792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 3rd International Symposium on Autonomous Systems (ISAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISASS.2019.8757792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantizer-Based Adaptive Event-Triggered Control for Linear Systems
In this paper, we propose an adaptive event-triggered control approach based on quantizer for linear systems. Firstly, an adaptive event-triggered mechanism is designed according to the state measurement error in order to reduce the number of information transmission and the occupation of communication bandwidth while ensuring the stability of the system. Secondly, a quantizer is used for reducing processing data and cutting down network congestion, which can improve the quality of control in a certain extent. Next, the co-design scheme of event-triggered mechanism and the controller is given to guarantee the asymptotically stability of the closed-loop system based on Lyapunov function and linear matrix inequality technique. Finally, a simulation example illustrates the efficiency of the presented method.