Nuril Esti Khomariah, D. Pramadihanto, R. S. Dewanto
{"title":"流动双足机器人:行走模式生成","authors":"Nuril Esti Khomariah, D. Pramadihanto, R. S. Dewanto","doi":"10.1109/ELECSYM.2015.7380817","DOIUrl":null,"url":null,"abstract":"In this paper we described a model and a simulation of walking pattern of FLoW bipedal robot. This kinematics design combined four-bar linkages and translational actuators. Inverse kinematics problem is solved by using trigonometry approach. While walking pattern is made of a superposition between linear and sinusoidal function. The equations is simple and does not required long computation time. So it is efficient to maximize overall process on robot. The stability of the robot is controlled by CoM point which is calculated by multiplying the mass and position of the robot element and keeping it remain in the robot support polygon.","PeriodicalId":248906,"journal":{"name":"2015 International Electronics Symposium (IES)","volume":"349 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"FLoW bipedal robot: Walking pattern generation\",\"authors\":\"Nuril Esti Khomariah, D. Pramadihanto, R. S. Dewanto\",\"doi\":\"10.1109/ELECSYM.2015.7380817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we described a model and a simulation of walking pattern of FLoW bipedal robot. This kinematics design combined four-bar linkages and translational actuators. Inverse kinematics problem is solved by using trigonometry approach. While walking pattern is made of a superposition between linear and sinusoidal function. The equations is simple and does not required long computation time. So it is efficient to maximize overall process on robot. The stability of the robot is controlled by CoM point which is calculated by multiplying the mass and position of the robot element and keeping it remain in the robot support polygon.\",\"PeriodicalId\":248906,\"journal\":{\"name\":\"2015 International Electronics Symposium (IES)\",\"volume\":\"349 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Electronics Symposium (IES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELECSYM.2015.7380817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Electronics Symposium (IES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELECSYM.2015.7380817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we described a model and a simulation of walking pattern of FLoW bipedal robot. This kinematics design combined four-bar linkages and translational actuators. Inverse kinematics problem is solved by using trigonometry approach. While walking pattern is made of a superposition between linear and sinusoidal function. The equations is simple and does not required long computation time. So it is efficient to maximize overall process on robot. The stability of the robot is controlled by CoM point which is calculated by multiplying the mass and position of the robot element and keeping it remain in the robot support polygon.