基于独立分量分析的遥感图像无监督分类

M. C. Sahingil, Y. Ozkazanc
{"title":"基于独立分量分析的遥感图像无监督分类","authors":"M. C. Sahingil, Y. Ozkazanc","doi":"10.1109/SIU.2010.5650952","DOIUrl":null,"url":null,"abstract":"In this paper, some independent component analysis based unsupervised classification methods for remotely sensed imagery are proposed. In order to determine the validity of the proposed unsupervised classification methodology, some clustering quality metrics are used. According to the obtained results, the successes of proposed methods are compared.","PeriodicalId":152297,"journal":{"name":"2010 IEEE 18th Signal Processing and Communications Applications Conference","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised classification of remotely sensed images via independent component analysis\",\"authors\":\"M. C. Sahingil, Y. Ozkazanc\",\"doi\":\"10.1109/SIU.2010.5650952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, some independent component analysis based unsupervised classification methods for remotely sensed imagery are proposed. In order to determine the validity of the proposed unsupervised classification methodology, some clustering quality metrics are used. According to the obtained results, the successes of proposed methods are compared.\",\"PeriodicalId\":152297,\"journal\":{\"name\":\"2010 IEEE 18th Signal Processing and Communications Applications Conference\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 18th Signal Processing and Communications Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2010.5650952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 18th Signal Processing and Communications Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2010.5650952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了几种基于独立分量分析的遥感图像无监督分类方法。为了确定所提出的无监督分类方法的有效性,使用了一些聚类质量度量。根据所得结果,比较了所提方法的成功之处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised classification of remotely sensed images via independent component analysis
In this paper, some independent component analysis based unsupervised classification methods for remotely sensed imagery are proposed. In order to determine the validity of the proposed unsupervised classification methodology, some clustering quality metrics are used. According to the obtained results, the successes of proposed methods are compared.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信