Luyi Xing, Xiaorui Pan, Rui Wang, Kan Yuan, Xiaofeng Wang
{"title":"升级你的Android,升级我的恶意软件:通过移动操作系统升级的权限升级","authors":"Luyi Xing, Xiaorui Pan, Rui Wang, Kan Yuan, Xiaofeng Wang","doi":"10.1109/SP.2014.32","DOIUrl":null,"url":null,"abstract":"Android is a fast evolving system, with new updates coming out one after another. These updates often completely overhaul a running system, replacing and adding tens of thousands of files across Android's complex architecture, in the presence of critical user data and applications (apps for short). To avoid accidental damages to such data and existing apps, the upgrade process involves complicated program logic, whose security implications, however, are less known. In this paper, we report the first systematic study on the Android updating mechanism, focusing on its Package Management Service (PMS). Our research brought to light a new type of security-critical vulnerabilities, called Pileup flaws, through which a malicious app can strategically declare a set of privileges and attributes on a low-version operating system (OS) and wait until it is upgraded to escalate its privileges on the new system. Specifically, we found that by exploiting the Pileup vulnerabilities, the app can not only acquire a set of newly added system and signature permissions but also determine their settings (e.g., protection levels), and it can further substitute for new system apps, contaminate their data (e.g., cache, cookies of Android default browser) to steal sensitive user information or change security configurations, and prevent installation of critical system services. We systematically analyzed the source code of PMS using a program verification tool and confirmed the presence of those security flaws on all Android official versions and over 3000 customized versions. Our research also identified hundreds of exploit opportunities the adversary can leverage over thousands of devices across different device manufacturers, carriers and countries. To mitigate this threat without endangering user data and apps during an upgrade, we also developed a new detection service, called SecUP, which deploys a scanner on the user's device to capture the malicious apps designed to exploit Pileup vulnerabilities, based upon the vulnerability-related information automatically collected from newly released Android OS images.","PeriodicalId":196038,"journal":{"name":"2014 IEEE Symposium on Security and Privacy","volume":"50 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"114","resultStr":"{\"title\":\"Upgrading Your Android, Elevating My Malware: Privilege Escalation through Mobile OS Updating\",\"authors\":\"Luyi Xing, Xiaorui Pan, Rui Wang, Kan Yuan, Xiaofeng Wang\",\"doi\":\"10.1109/SP.2014.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Android is a fast evolving system, with new updates coming out one after another. These updates often completely overhaul a running system, replacing and adding tens of thousands of files across Android's complex architecture, in the presence of critical user data and applications (apps for short). To avoid accidental damages to such data and existing apps, the upgrade process involves complicated program logic, whose security implications, however, are less known. In this paper, we report the first systematic study on the Android updating mechanism, focusing on its Package Management Service (PMS). Our research brought to light a new type of security-critical vulnerabilities, called Pileup flaws, through which a malicious app can strategically declare a set of privileges and attributes on a low-version operating system (OS) and wait until it is upgraded to escalate its privileges on the new system. Specifically, we found that by exploiting the Pileup vulnerabilities, the app can not only acquire a set of newly added system and signature permissions but also determine their settings (e.g., protection levels), and it can further substitute for new system apps, contaminate their data (e.g., cache, cookies of Android default browser) to steal sensitive user information or change security configurations, and prevent installation of critical system services. We systematically analyzed the source code of PMS using a program verification tool and confirmed the presence of those security flaws on all Android official versions and over 3000 customized versions. Our research also identified hundreds of exploit opportunities the adversary can leverage over thousands of devices across different device manufacturers, carriers and countries. To mitigate this threat without endangering user data and apps during an upgrade, we also developed a new detection service, called SecUP, which deploys a scanner on the user's device to capture the malicious apps designed to exploit Pileup vulnerabilities, based upon the vulnerability-related information automatically collected from newly released Android OS images.\",\"PeriodicalId\":196038,\"journal\":{\"name\":\"2014 IEEE Symposium on Security and Privacy\",\"volume\":\"50 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"114\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Security and Privacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SP.2014.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP.2014.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Upgrading Your Android, Elevating My Malware: Privilege Escalation through Mobile OS Updating
Android is a fast evolving system, with new updates coming out one after another. These updates often completely overhaul a running system, replacing and adding tens of thousands of files across Android's complex architecture, in the presence of critical user data and applications (apps for short). To avoid accidental damages to such data and existing apps, the upgrade process involves complicated program logic, whose security implications, however, are less known. In this paper, we report the first systematic study on the Android updating mechanism, focusing on its Package Management Service (PMS). Our research brought to light a new type of security-critical vulnerabilities, called Pileup flaws, through which a malicious app can strategically declare a set of privileges and attributes on a low-version operating system (OS) and wait until it is upgraded to escalate its privileges on the new system. Specifically, we found that by exploiting the Pileup vulnerabilities, the app can not only acquire a set of newly added system and signature permissions but also determine their settings (e.g., protection levels), and it can further substitute for new system apps, contaminate their data (e.g., cache, cookies of Android default browser) to steal sensitive user information or change security configurations, and prevent installation of critical system services. We systematically analyzed the source code of PMS using a program verification tool and confirmed the presence of those security flaws on all Android official versions and over 3000 customized versions. Our research also identified hundreds of exploit opportunities the adversary can leverage over thousands of devices across different device manufacturers, carriers and countries. To mitigate this threat without endangering user data and apps during an upgrade, we also developed a new detection service, called SecUP, which deploys a scanner on the user's device to capture the malicious apps designed to exploit Pileup vulnerabilities, based upon the vulnerability-related information automatically collected from newly released Android OS images.