复信号高(偶)阶谱的可分解性:一个充要条件

J. Le Roux, C. Huet
{"title":"复信号高(偶)阶谱的可分解性:一个充要条件","authors":"J. Le Roux, C. Huet","doi":"10.1109/HOST.1997.613552","DOIUrl":null,"url":null,"abstract":"This communication presents a necessary and sufficient condition for the factorizability of higher order spectra of complex signals. This condition is based on the symmetries of higher order spectra and on an extension of a formula proposed by Marron, Sanchez and Sullivan for unwrapping phases of third order spectra (see J. Opt. Soc. Am. A, vol.7, p.14-20, 1990). It is an identity between products of higher order spectra. Our factorisability test requires no phase unwrapping.","PeriodicalId":305928,"journal":{"name":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"17 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Factorizability of complex signals higher (even) order spectra: a necessary and sufficient condition\",\"authors\":\"J. Le Roux, C. Huet\",\"doi\":\"10.1109/HOST.1997.613552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This communication presents a necessary and sufficient condition for the factorizability of higher order spectra of complex signals. This condition is based on the symmetries of higher order spectra and on an extension of a formula proposed by Marron, Sanchez and Sullivan for unwrapping phases of third order spectra (see J. Opt. Soc. Am. A, vol.7, p.14-20, 1990). It is an identity between products of higher order spectra. Our factorisability test requires no phase unwrapping.\",\"PeriodicalId\":305928,\"journal\":{\"name\":\"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics\",\"volume\":\"17 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HOST.1997.613552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1997.613552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

给出了复信号高阶谱可因式分解的充分必要条件。这个条件是基于高阶光谱的对称性和由Marron, Sanchez和Sullivan提出的关于三阶光谱展开相的公式的推广(参见J. Opt. Soc.)。点。A,第七卷,第14-20页,1990年)。它是高阶谱的乘积之间的恒等式。我们的可分解性测试不需要展开阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Factorizability of complex signals higher (even) order spectra: a necessary and sufficient condition
This communication presents a necessary and sufficient condition for the factorizability of higher order spectra of complex signals. This condition is based on the symmetries of higher order spectra and on an extension of a formula proposed by Marron, Sanchez and Sullivan for unwrapping phases of third order spectra (see J. Opt. Soc. Am. A, vol.7, p.14-20, 1990). It is an identity between products of higher order spectra. Our factorisability test requires no phase unwrapping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信