Bart J. Thijssen, E. Klumperink, P. Quinlan, B. Nauta
{"title":"一种用于物联网接收机的0.06 - 3.4 mhz 92 μ w极锐过渡带模拟FIR通道选择滤波器","authors":"Bart J. Thijssen, E. Klumperink, P. Quinlan, B. Nauta","doi":"10.1109/ESSCIRC.2019.8902851","DOIUrl":null,"url":null,"abstract":"Analog FIR filtering is proposed to improve the performance of a single stage gm-C channel selection filter for ultra low power Internet-of-Things receivers. The transconductor is implemented as a digital-to-analog converter; allowing a varying transconductance in time, which results in a very sharp FIR filter. The filter is manufactured in 22-nm FDSOI and has a core area of 0.09 mm2. It consumes 92 µW from a 700-mV supply and achieves f−60 dB/f−3 dB = 3.8. The filter has 31.5 dB gain, out-of-band OIP3 of 28 dBm and output referred 1-dB compression point of 3.7 dBm. The filter bandwidth is tunable from 0.06 to 3.4 MHz.","PeriodicalId":402948,"journal":{"name":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","volume":"56 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A 0.06–3.4-MHz 92-μW Analog FIR Channel Selection Filter With Very Sharp Transition Band for IoT Receivers\",\"authors\":\"Bart J. Thijssen, E. Klumperink, P. Quinlan, B. Nauta\",\"doi\":\"10.1109/ESSCIRC.2019.8902851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analog FIR filtering is proposed to improve the performance of a single stage gm-C channel selection filter for ultra low power Internet-of-Things receivers. The transconductor is implemented as a digital-to-analog converter; allowing a varying transconductance in time, which results in a very sharp FIR filter. The filter is manufactured in 22-nm FDSOI and has a core area of 0.09 mm2. It consumes 92 µW from a 700-mV supply and achieves f−60 dB/f−3 dB = 3.8. The filter has 31.5 dB gain, out-of-band OIP3 of 28 dBm and output referred 1-dB compression point of 3.7 dBm. The filter bandwidth is tunable from 0.06 to 3.4 MHz.\",\"PeriodicalId\":402948,\"journal\":{\"name\":\"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)\",\"volume\":\"56 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSCIRC.2019.8902851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2019.8902851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 0.06–3.4-MHz 92-μW Analog FIR Channel Selection Filter With Very Sharp Transition Band for IoT Receivers
Analog FIR filtering is proposed to improve the performance of a single stage gm-C channel selection filter for ultra low power Internet-of-Things receivers. The transconductor is implemented as a digital-to-analog converter; allowing a varying transconductance in time, which results in a very sharp FIR filter. The filter is manufactured in 22-nm FDSOI and has a core area of 0.09 mm2. It consumes 92 µW from a 700-mV supply and achieves f−60 dB/f−3 dB = 3.8. The filter has 31.5 dB gain, out-of-band OIP3 of 28 dBm and output referred 1-dB compression point of 3.7 dBm. The filter bandwidth is tunable from 0.06 to 3.4 MHz.