从新浪微博文本集中提取主题关键词

S. Xu, Juncai Guo, Xue Chen
{"title":"从新浪微博文本集中提取主题关键词","authors":"S. Xu, Juncai Guo, Xue Chen","doi":"10.1109/ICALIP.2016.7846663","DOIUrl":null,"url":null,"abstract":"Sina Weibo is one of the most popular microblogging website in China. It has more than 500 million registered users and the daily production of posters is over 100 million, with a market penetration similar to Twitter. Mining the useful information from large volume of fragmented short texts is a fundamental but very challenging research work. This paper proposes a method LET(LDA&Entropy&Tex-trank) to extract topic keywords from Sina Weibo topics text sets. LET considers both topic influence of keywords and topic discrimination of keyword that combines the merits of LDA, Entropy and TextRank. In addition, we design a new standard evaluation method KESS (topic KEywords Sta-ndard Sequence). Based on KESS, we can compute the offset loss scores for the four different keywords extraction methods. Extensive simulations show that LET is a comparatively efficient and effective method to obtain topic words from hot topics of Sina Weibo.","PeriodicalId":184170,"journal":{"name":"2016 International Conference on Audio, Language and Image Processing (ICALIP)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Extracting topic keywords from Sina Weibo text sets\",\"authors\":\"S. Xu, Juncai Guo, Xue Chen\",\"doi\":\"10.1109/ICALIP.2016.7846663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sina Weibo is one of the most popular microblogging website in China. It has more than 500 million registered users and the daily production of posters is over 100 million, with a market penetration similar to Twitter. Mining the useful information from large volume of fragmented short texts is a fundamental but very challenging research work. This paper proposes a method LET(LDA&Entropy&Tex-trank) to extract topic keywords from Sina Weibo topics text sets. LET considers both topic influence of keywords and topic discrimination of keyword that combines the merits of LDA, Entropy and TextRank. In addition, we design a new standard evaluation method KESS (topic KEywords Sta-ndard Sequence). Based on KESS, we can compute the offset loss scores for the four different keywords extraction methods. Extensive simulations show that LET is a comparatively efficient and effective method to obtain topic words from hot topics of Sina Weibo.\",\"PeriodicalId\":184170,\"journal\":{\"name\":\"2016 International Conference on Audio, Language and Image Processing (ICALIP)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Audio, Language and Image Processing (ICALIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICALIP.2016.7846663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Audio, Language and Image Processing (ICALIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICALIP.2016.7846663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

新浪微博是中国最受欢迎的微博网站之一。其注册用户超过5亿,日制作海报量超过1亿张,市场渗透率与Twitter相当。从大量碎片化的短文本中挖掘有用信息是一项基础但又极具挑战性的研究工作。本文提出了一种LET(lda&entropy&text -trank)方法从新浪微博主题文本集中提取主题关键词。LET综合了LDA、熵和TextRank的优点,既考虑了关键词的主题影响,又考虑了关键词的主题识别。此外,我们设计了一种新的标准评价方法KESS(主题关键词标准序列)。基于KESS,我们可以计算四种不同关键字提取方法的偏移损失分数。大量的仿真结果表明,LET是一种相对高效、有效的从新浪微博热点话题中获取主题词的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extracting topic keywords from Sina Weibo text sets
Sina Weibo is one of the most popular microblogging website in China. It has more than 500 million registered users and the daily production of posters is over 100 million, with a market penetration similar to Twitter. Mining the useful information from large volume of fragmented short texts is a fundamental but very challenging research work. This paper proposes a method LET(LDA&Entropy&Tex-trank) to extract topic keywords from Sina Weibo topics text sets. LET considers both topic influence of keywords and topic discrimination of keyword that combines the merits of LDA, Entropy and TextRank. In addition, we design a new standard evaluation method KESS (topic KEywords Sta-ndard Sequence). Based on KESS, we can compute the offset loss scores for the four different keywords extraction methods. Extensive simulations show that LET is a comparatively efficient and effective method to obtain topic words from hot topics of Sina Weibo.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信