{"title":"基于残差卷积神经网络和多季节Sentinel-2图像的城市局地气候带分类","authors":"C. Qiu, M. Schmitt, Lichao Mou, Xiaoxiang Zhu","doi":"10.1109/PRRS.2018.8486155","DOIUrl":null,"url":null,"abstract":"This study presents a classification framework for the urban Local Climate Zones (LCZs) based on a Residual Convolutional Neural Network (ResNet) architecture. In order to make full use of the temporal and spectral information contained in modern Earth observation data, multi-seasonal Sentinel-2 images are exploited. After training the ResNet, independent predictions are made from the multi-seasonal images. Subsequently, the seasonal predictions are fused in a decision fusion step based on majority voting. A systematical experiment is carried out in a large-scale study area located in the center of Europe. A significant accuracy improvement can be achieved by applying majority voting on multi-seasonal predictions. Based on the results, the main challenges and possible solutions of urban LCZ classification are further discussed, providing guidance for large-scale urban LCZ mapping.","PeriodicalId":197319,"journal":{"name":"2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)","volume":"43 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Urban Local Climate Zone Classification with a Residual Convolutional Neural Network and Multi-Seasonal Sentinel-2 Images\",\"authors\":\"C. Qiu, M. Schmitt, Lichao Mou, Xiaoxiang Zhu\",\"doi\":\"10.1109/PRRS.2018.8486155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a classification framework for the urban Local Climate Zones (LCZs) based on a Residual Convolutional Neural Network (ResNet) architecture. In order to make full use of the temporal and spectral information contained in modern Earth observation data, multi-seasonal Sentinel-2 images are exploited. After training the ResNet, independent predictions are made from the multi-seasonal images. Subsequently, the seasonal predictions are fused in a decision fusion step based on majority voting. A systematical experiment is carried out in a large-scale study area located in the center of Europe. A significant accuracy improvement can be achieved by applying majority voting on multi-seasonal predictions. Based on the results, the main challenges and possible solutions of urban LCZ classification are further discussed, providing guidance for large-scale urban LCZ mapping.\",\"PeriodicalId\":197319,\"journal\":{\"name\":\"2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)\",\"volume\":\"43 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRRS.2018.8486155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRRS.2018.8486155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Urban Local Climate Zone Classification with a Residual Convolutional Neural Network and Multi-Seasonal Sentinel-2 Images
This study presents a classification framework for the urban Local Climate Zones (LCZs) based on a Residual Convolutional Neural Network (ResNet) architecture. In order to make full use of the temporal and spectral information contained in modern Earth observation data, multi-seasonal Sentinel-2 images are exploited. After training the ResNet, independent predictions are made from the multi-seasonal images. Subsequently, the seasonal predictions are fused in a decision fusion step based on majority voting. A systematical experiment is carried out in a large-scale study area located in the center of Europe. A significant accuracy improvement can be achieved by applying majority voting on multi-seasonal predictions. Based on the results, the main challenges and possible solutions of urban LCZ classification are further discussed, providing guidance for large-scale urban LCZ mapping.