基于GPs和OAD协方差函数的高光谱图像分类与自动端元提取

S. Schneider, A. Melkumyan, R. Murphy, E. Nettleton
{"title":"基于GPs和OAD协方差函数的高光谱图像分类与自动端元提取","authors":"S. Schneider, A. Melkumyan, R. Murphy, E. Nettleton","doi":"10.1109/ICTAI.2011.189","DOIUrl":null,"url":null,"abstract":"In this paper we use a machine learning algorithm based on Gaussian Processes (GPs) and the Observation Angle Dependent (OAD) covariance function to classify hyper spectral imagery for the first time. This paper demonstrates the potential of the GP-OAD method for use in autonomous mining to identify and map geology and mineralogy on a vertical mine face. We discuss the importance of independent training data (i.e. a spectral library) to map any mine face without a priori knowledge. We compare an independent spectral library to other libraries, based on image data, and evaluate their relative performances to distinguish ore bearing zones from waste. Results show that the algorithm yields high accuracies (90%) and F-scores (77%), the best results are achieved when libraries are combined. We also demonstrate mapping of geology using imagery under different conditions of illumination (e.g. shade).","PeriodicalId":332661,"journal":{"name":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","volume":"105 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Classification of Hyperspectral Imagery Using GPs and the OAD Covariance Function with Automated Endmember Extraction\",\"authors\":\"S. Schneider, A. Melkumyan, R. Murphy, E. Nettleton\",\"doi\":\"10.1109/ICTAI.2011.189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we use a machine learning algorithm based on Gaussian Processes (GPs) and the Observation Angle Dependent (OAD) covariance function to classify hyper spectral imagery for the first time. This paper demonstrates the potential of the GP-OAD method for use in autonomous mining to identify and map geology and mineralogy on a vertical mine face. We discuss the importance of independent training data (i.e. a spectral library) to map any mine face without a priori knowledge. We compare an independent spectral library to other libraries, based on image data, and evaluate their relative performances to distinguish ore bearing zones from waste. Results show that the algorithm yields high accuracies (90%) and F-scores (77%), the best results are achieved when libraries are combined. We also demonstrate mapping of geology using imagery under different conditions of illumination (e.g. shade).\",\"PeriodicalId\":332661,\"journal\":{\"name\":\"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence\",\"volume\":\"105 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2011.189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2011.189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文首次采用基于高斯过程(GPs)和观测角度相关(OAD)协方差函数的机器学习算法对高光谱图像进行分类。本文展示了GP-OAD方法在自主采矿中识别和绘制垂直工作面地质和矿物学图的潜力。我们讨论了独立训练数据(即光谱库)在没有先验知识的情况下绘制任何矿面的重要性。我们将一个独立的光谱库与其他基于图像数据的光谱库进行比较,并评估它们在区分含矿带和废矿带方面的相对性能。结果表明,该算法具有较高的准确率(90%)和f分数(77%),其中组合库效果最好。我们还演示了在不同光照条件下(例如阴影)使用图像绘制地质图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Hyperspectral Imagery Using GPs and the OAD Covariance Function with Automated Endmember Extraction
In this paper we use a machine learning algorithm based on Gaussian Processes (GPs) and the Observation Angle Dependent (OAD) covariance function to classify hyper spectral imagery for the first time. This paper demonstrates the potential of the GP-OAD method for use in autonomous mining to identify and map geology and mineralogy on a vertical mine face. We discuss the importance of independent training data (i.e. a spectral library) to map any mine face without a priori knowledge. We compare an independent spectral library to other libraries, based on image data, and evaluate their relative performances to distinguish ore bearing zones from waste. Results show that the algorithm yields high accuracies (90%) and F-scores (77%), the best results are achieved when libraries are combined. We also demonstrate mapping of geology using imagery under different conditions of illumination (e.g. shade).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信