李代数的中心扩展算法

R. Beck, B. Kolman
{"title":"李代数的中心扩展算法","authors":"R. Beck, B. Kolman","doi":"10.1145/800206.806391","DOIUrl":null,"url":null,"abstract":"It follows from [1] that every n-dimensional nilpotent Lie algebra is a central extension of a lower dimensional nilpotent Lie algebra. This paper develops algorithms to handle two problems: (1) the decomposition of a given nilpotent Lie algebra @@@@ as a finite sequence of central extensions of lower dimensional nilpotent Lie algebras and (2) the construction of all n-dimensional nilpotent Lie algebras as central extensions of lower dimensional nilpotent Lie algebras.","PeriodicalId":314618,"journal":{"name":"Symposium on Symbolic and Algebraic Manipulation","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1981-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Algorithms for central extensions of Lie algebras\",\"authors\":\"R. Beck, B. Kolman\",\"doi\":\"10.1145/800206.806391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It follows from [1] that every n-dimensional nilpotent Lie algebra is a central extension of a lower dimensional nilpotent Lie algebra. This paper develops algorithms to handle two problems: (1) the decomposition of a given nilpotent Lie algebra @@@@ as a finite sequence of central extensions of lower dimensional nilpotent Lie algebras and (2) the construction of all n-dimensional nilpotent Lie algebras as central extensions of lower dimensional nilpotent Lie algebras.\",\"PeriodicalId\":314618,\"journal\":{\"name\":\"Symposium on Symbolic and Algebraic Manipulation\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1981-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium on Symbolic and Algebraic Manipulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/800206.806391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Symbolic and Algebraic Manipulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800206.806391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由[1]可知,每一个n维幂零李代数都是一个低维幂零李代数的中心扩展。本文发展了处理两个问题的算法:(1)将给定的幂零李代数@@@@分解为低维幂零李代数的中心扩展的有限序列;(2)将所有n维幂零李代数构造为低维幂零李代数的中心扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithms for central extensions of Lie algebras
It follows from [1] that every n-dimensional nilpotent Lie algebra is a central extension of a lower dimensional nilpotent Lie algebra. This paper develops algorithms to handle two problems: (1) the decomposition of a given nilpotent Lie algebra @@@@ as a finite sequence of central extensions of lower dimensional nilpotent Lie algebras and (2) the construction of all n-dimensional nilpotent Lie algebras as central extensions of lower dimensional nilpotent Lie algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信