高维数据的k-均值森林分类器

Zizhong Chen, Xin Ding, Shuyin Xia, Baiyun Chen
{"title":"高维数据的k-均值森林分类器","authors":"Zizhong Chen, Xin Ding, Shuyin Xia, Baiyun Chen","doi":"10.1109/ICBK.2018.00050","DOIUrl":null,"url":null,"abstract":"The priority search k-means tree algorithm is the most effective k-nearest neighbor algorithm for high dimensional data as far as we know. However, this algorithm is sensitive to attribute noise which is common in high dimensional spaces. Therefore, this paper presents a new method named k-means forest that combines the priority search k-means tree algorithm with random forest. The main idea is to create multiple priority search k-means trees by randomly selecting a fixed number of attributes to make decisions and get the final result by voting. We also design a parallel version for the algorithm. The experimental results on artificial and public benchmark data sets demonstrate the effectiveness of the proposed method.","PeriodicalId":144958,"journal":{"name":"2018 IEEE International Conference on Big Knowledge (ICBK)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The k-Means Forest Classifier for High Dimensional Data\",\"authors\":\"Zizhong Chen, Xin Ding, Shuyin Xia, Baiyun Chen\",\"doi\":\"10.1109/ICBK.2018.00050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The priority search k-means tree algorithm is the most effective k-nearest neighbor algorithm for high dimensional data as far as we know. However, this algorithm is sensitive to attribute noise which is common in high dimensional spaces. Therefore, this paper presents a new method named k-means forest that combines the priority search k-means tree algorithm with random forest. The main idea is to create multiple priority search k-means trees by randomly selecting a fixed number of attributes to make decisions and get the final result by voting. We also design a parallel version for the algorithm. The experimental results on artificial and public benchmark data sets demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":144958,\"journal\":{\"name\":\"2018 IEEE International Conference on Big Knowledge (ICBK)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Big Knowledge (ICBK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBK.2018.00050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK.2018.00050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

优先搜索k-均值树算法是目前已知的最有效的高维数据k近邻算法。然而,该算法对高维空间中常见的属性噪声敏感。因此,本文提出了一种将优先搜索k-means树算法与随机森林相结合的新方法——k-means森林。其主要思想是通过随机选择固定数量的属性进行决策,并通过投票获得最终结果,从而创建多个优先级搜索k-means树。我们还为该算法设计了一个并行版本。在人工和公共基准数据集上的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The k-Means Forest Classifier for High Dimensional Data
The priority search k-means tree algorithm is the most effective k-nearest neighbor algorithm for high dimensional data as far as we know. However, this algorithm is sensitive to attribute noise which is common in high dimensional spaces. Therefore, this paper presents a new method named k-means forest that combines the priority search k-means tree algorithm with random forest. The main idea is to create multiple priority search k-means trees by randomly selecting a fixed number of attributes to make decisions and get the final result by voting. We also design a parallel version for the algorithm. The experimental results on artificial and public benchmark data sets demonstrate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信