基于FPGA的粒子群算法

Monia Ettouil, Habib Smei, A. Jemai
{"title":"基于FPGA的粒子群算法","authors":"Monia Ettouil, Habib Smei, A. Jemai","doi":"10.1109/ICM.2018.8704047","DOIUrl":null,"url":null,"abstract":"The particle swarm optimization PSO is an attractive domain for community looking to enhance time for optimal solutions. Several works will be done for SW or SW/HW implementation. The latter often gives better performance. In this paper, we present a comparative study of these various solutions and we focus on the FPGA ones. Our approach is based on a codesign methodology which adjusts performance parameters at design time.","PeriodicalId":305356,"journal":{"name":"2018 30th International Conference on Microelectronics (ICM)","volume":"ED-13 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Particle Swarm Optimization on FPGA\",\"authors\":\"Monia Ettouil, Habib Smei, A. Jemai\",\"doi\":\"10.1109/ICM.2018.8704047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The particle swarm optimization PSO is an attractive domain for community looking to enhance time for optimal solutions. Several works will be done for SW or SW/HW implementation. The latter often gives better performance. In this paper, we present a comparative study of these various solutions and we focus on the FPGA ones. Our approach is based on a codesign methodology which adjusts performance parameters at design time.\",\"PeriodicalId\":305356,\"journal\":{\"name\":\"2018 30th International Conference on Microelectronics (ICM)\",\"volume\":\"ED-13 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 30th International Conference on Microelectronics (ICM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICM.2018.8704047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 30th International Conference on Microelectronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM.2018.8704047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

粒子群优化粒子群算法(PSO)是一个有吸引力的领域,为社区寻求提高最优解的时间。一些工作将为软件或软件/硬件实现完成。后者通常提供更好的性能。在本文中,我们对这些不同的解决方案进行了比较研究,并重点介绍了FPGA解决方案。我们的方法是基于协同设计方法,在设计时调整性能参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle Swarm Optimization on FPGA
The particle swarm optimization PSO is an attractive domain for community looking to enhance time for optimal solutions. Several works will be done for SW or SW/HW implementation. The latter often gives better performance. In this paper, we present a comparative study of these various solutions and we focus on the FPGA ones. Our approach is based on a codesign methodology which adjusts performance parameters at design time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信