{"title":"基于多头注意机制的双指针网络多实体关系提取","authors":"Seongsik Park, H. Kim","doi":"10.18653/v1/D19-6608","DOIUrl":null,"url":null,"abstract":"Many previous studies on relation extrac-tion have been focused on finding only one relation between two entities in a single sentence. However, we can easily find the fact that multiple entities exist in a single sentence and the entities form multiple relations. To resolve this prob-lem, we propose a relation extraction model based on a dual pointer network with a multi-head attention mechanism. The proposed model finds n-to-1 subject-object relations by using a forward de-coder called an object decoder. Then, it finds 1-to-n subject-object relations by using a backward decoder called a sub-ject decoder. In the experiments with the ACE-05 dataset and the NYT dataset, the proposed model achieved the state-of-the-art performances (F1-score of 80.5% in the ACE-05 dataset, F1-score of 78.3% in the NYT dataset)","PeriodicalId":153447,"journal":{"name":"Proceedings of the Second Workshop on Fact Extraction and VERification (FEVER)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Relation Extraction among Multiple Entities Using a Dual Pointer Network with a Multi-Head Attention Mechanism\",\"authors\":\"Seongsik Park, H. Kim\",\"doi\":\"10.18653/v1/D19-6608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many previous studies on relation extrac-tion have been focused on finding only one relation between two entities in a single sentence. However, we can easily find the fact that multiple entities exist in a single sentence and the entities form multiple relations. To resolve this prob-lem, we propose a relation extraction model based on a dual pointer network with a multi-head attention mechanism. The proposed model finds n-to-1 subject-object relations by using a forward de-coder called an object decoder. Then, it finds 1-to-n subject-object relations by using a backward decoder called a sub-ject decoder. In the experiments with the ACE-05 dataset and the NYT dataset, the proposed model achieved the state-of-the-art performances (F1-score of 80.5% in the ACE-05 dataset, F1-score of 78.3% in the NYT dataset)\",\"PeriodicalId\":153447,\"journal\":{\"name\":\"Proceedings of the Second Workshop on Fact Extraction and VERification (FEVER)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Second Workshop on Fact Extraction and VERification (FEVER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/D19-6608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second Workshop on Fact Extraction and VERification (FEVER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/D19-6608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Relation Extraction among Multiple Entities Using a Dual Pointer Network with a Multi-Head Attention Mechanism
Many previous studies on relation extrac-tion have been focused on finding only one relation between two entities in a single sentence. However, we can easily find the fact that multiple entities exist in a single sentence and the entities form multiple relations. To resolve this prob-lem, we propose a relation extraction model based on a dual pointer network with a multi-head attention mechanism. The proposed model finds n-to-1 subject-object relations by using a forward de-coder called an object decoder. Then, it finds 1-to-n subject-object relations by using a backward decoder called a sub-ject decoder. In the experiments with the ACE-05 dataset and the NYT dataset, the proposed model achieved the state-of-the-art performances (F1-score of 80.5% in the ACE-05 dataset, F1-score of 78.3% in the NYT dataset)