通过ACP和核重映射对生产批进行聚类的变量选择

Victor Leonardo Cervo, M. Anzanello
{"title":"通过ACP和核重映射对生产批进行聚类的变量选择","authors":"Victor Leonardo Cervo, M. Anzanello","doi":"10.1590/0103-6513.143613","DOIUrl":null,"url":null,"abstract":"Clustering techniques are tailored to find internally homogeneous groups of observations. In industrial processes that rely on batches, grouping batches with similar profiles provides valuable information about process control and monitoring. This paper proposes a variable selection approach based on the kernel function and Principal Component Analysis (PCA). The clustering quality is assessed through the Silhouette Index (SI). When applied to three industrial processes, the proposed approach retained an average of 5.16% of the original variables, yielding on average a 235.4% more precise batch grouping. We also performed a simulation experiment.","PeriodicalId":263089,"journal":{"name":"Production Journal","volume":"GE-23 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seleção de variáveis para clusterização de bateladas produtivas através de ACP e remapeamento kernel\",\"authors\":\"Victor Leonardo Cervo, M. Anzanello\",\"doi\":\"10.1590/0103-6513.143613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering techniques are tailored to find internally homogeneous groups of observations. In industrial processes that rely on batches, grouping batches with similar profiles provides valuable information about process control and monitoring. This paper proposes a variable selection approach based on the kernel function and Principal Component Analysis (PCA). The clustering quality is assessed through the Silhouette Index (SI). When applied to three industrial processes, the proposed approach retained an average of 5.16% of the original variables, yielding on average a 235.4% more precise batch grouping. We also performed a simulation experiment.\",\"PeriodicalId\":263089,\"journal\":{\"name\":\"Production Journal\",\"volume\":\"GE-23 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Production Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/0103-6513.143613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Production Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/0103-6513.143613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚类技术专门用于发现内部同质的观察组。在依赖于批的工业过程中,将具有相似配置文件的批分组提供了有关过程控制和监视的有价值的信息。提出了一种基于核函数和主成分分析(PCA)的变量选择方法。通过剪影指数(Silhouette Index, SI)评价聚类质量。当应用于三个工业过程时,所提出的方法平均保留了5.16%的原始变量,平均产生了235.4%的更精确的批分组。我们还进行了模拟实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seleção de variáveis para clusterização de bateladas produtivas através de ACP e remapeamento kernel
Clustering techniques are tailored to find internally homogeneous groups of observations. In industrial processes that rely on batches, grouping batches with similar profiles provides valuable information about process control and monitoring. This paper proposes a variable selection approach based on the kernel function and Principal Component Analysis (PCA). The clustering quality is assessed through the Silhouette Index (SI). When applied to three industrial processes, the proposed approach retained an average of 5.16% of the original variables, yielding on average a 235.4% more precise batch grouping. We also performed a simulation experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信