涉及多变量i函数的一些二重积分

D. Kumar, F. Ayant
{"title":"涉及多变量i函数的一些二重积分","authors":"D. Kumar, F. Ayant","doi":"10.17114/j.aua.2019.58.03","DOIUrl":null,"url":null,"abstract":"A remarkably large number of integral formulas involving diverse special functions have been presented. In this sequel, we aim to establish two double definite integral formulas whose integrands include the multivariable I-function. The integral formulas presented here, being very general, are found to reduce to yield a large number of relatively simple integral formulas whose integrands contain various special functions deducible from the multivariable I-function, just two of which are demonstrated. 2010 Mathematics Subject Classification: Primary: 33C60, 33C99; Secondary: 44A20","PeriodicalId":319629,"journal":{"name":"Acta Universitatis Apulensis","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SOME DOUBLE INTEGRALS INVOLVING MULTIVARIABLE I-FUNCTION\",\"authors\":\"D. Kumar, F. Ayant\",\"doi\":\"10.17114/j.aua.2019.58.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A remarkably large number of integral formulas involving diverse special functions have been presented. In this sequel, we aim to establish two double definite integral formulas whose integrands include the multivariable I-function. The integral formulas presented here, being very general, are found to reduce to yield a large number of relatively simple integral formulas whose integrands contain various special functions deducible from the multivariable I-function, just two of which are demonstrated. 2010 Mathematics Subject Classification: Primary: 33C60, 33C99; Secondary: 44A20\",\"PeriodicalId\":319629,\"journal\":{\"name\":\"Acta Universitatis Apulensis\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Apulensis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17114/j.aua.2019.58.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Apulensis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17114/j.aua.2019.58.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了大量涉及各种特殊函数的积分公式。在这篇续文中,我们的目的是建立两个二重定积分公式,其被积项包括多变量i函数。这里给出的积分公式是非常一般的,我们发现它们可以简化成大量相对简单的积分公式,这些积分公式的被积项包含了各种可以从多变量i函数中推导出来的特殊函数,我们只证明了其中的两个。2010数学学科分类:小学:33C60、33C99;二级:44 a20
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SOME DOUBLE INTEGRALS INVOLVING MULTIVARIABLE I-FUNCTION
A remarkably large number of integral formulas involving diverse special functions have been presented. In this sequel, we aim to establish two double definite integral formulas whose integrands include the multivariable I-function. The integral formulas presented here, being very general, are found to reduce to yield a large number of relatively simple integral formulas whose integrands contain various special functions deducible from the multivariable I-function, just two of which are demonstrated. 2010 Mathematics Subject Classification: Primary: 33C60, 33C99; Secondary: 44A20
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信