基于心音的心脏病非线性ARX建模

N. Shamsuddin, M. Taib
{"title":"基于心音的心脏病非线性ARX建模","authors":"N. Shamsuddin, M. Taib","doi":"10.1109/CSPA.2011.5759907","DOIUrl":null,"url":null,"abstract":"This paper proposed the heart disease modeling system based on heart sounds. The model uses ARX model as regression vector and Neural Network as nonlinear model structures. The number of hidden neurons was optimised by minimizing the criterion of NSSE, fit and FPE criterion. The model architecture of 2-4-1 perfectly fits the original heart sound signals with average R-square of above 99.9%. The weight parameters of the models were then estimated and analysed for the purpose of classification of the heart diseases.","PeriodicalId":282179,"journal":{"name":"2011 IEEE 7th International Colloquium on Signal Processing and its Applications","volume":"18 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nonlinear ARX modeling of heart diseases based on heart sounds\",\"authors\":\"N. Shamsuddin, M. Taib\",\"doi\":\"10.1109/CSPA.2011.5759907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposed the heart disease modeling system based on heart sounds. The model uses ARX model as regression vector and Neural Network as nonlinear model structures. The number of hidden neurons was optimised by minimizing the criterion of NSSE, fit and FPE criterion. The model architecture of 2-4-1 perfectly fits the original heart sound signals with average R-square of above 99.9%. The weight parameters of the models were then estimated and analysed for the purpose of classification of the heart diseases.\",\"PeriodicalId\":282179,\"journal\":{\"name\":\"2011 IEEE 7th International Colloquium on Signal Processing and its Applications\",\"volume\":\"18 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 7th International Colloquium on Signal Processing and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSPA.2011.5759907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 7th International Colloquium on Signal Processing and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPA.2011.5759907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了基于心音的心脏病建模系统。该模型采用ARX模型作为回归向量,神经网络作为非线性模型结构。通过最小化NSSE、fit和FPE准则来优化隐藏神经元的数量。2-4-1的模型结构与原始心音信号吻合良好,平均r平方在99.9%以上。然后对模型的权重参数进行估计和分析,以便对心脏病进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear ARX modeling of heart diseases based on heart sounds
This paper proposed the heart disease modeling system based on heart sounds. The model uses ARX model as regression vector and Neural Network as nonlinear model structures. The number of hidden neurons was optimised by minimizing the criterion of NSSE, fit and FPE criterion. The model architecture of 2-4-1 perfectly fits the original heart sound signals with average R-square of above 99.9%. The weight parameters of the models were then estimated and analysed for the purpose of classification of the heart diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信