随机字符串多模式匹配问题的复杂性

Frédérique Bassino, Tsinjo Rakotoarimalala, A. Sportiello
{"title":"随机字符串多模式匹配问题的复杂性","authors":"Frédérique Bassino, Tsinjo Rakotoarimalala, A. Sportiello","doi":"10.1137/1.9781611975062.5","DOIUrl":null,"url":null,"abstract":"We generalise a multiple string pattern matching algorithm, recently proposed by Fredriksson and Grabowski [J. Discr. Alg. 7, 2009], to deal with arbitrary dictionaries on an alphabet of size $s$. If $r_m$ is the number of words of length $m$ in the dictionary, and $\\phi(r) = \\max_m \\ln(s\\, m\\, r_m)/m$, the complexity rate for the string characters to be read by this algorithm is at most $\\kappa_{{}_\\textrm{UB}}\\, \\phi(r)$ for some constant $\\kappa_{{}_\\textrm{UB}}$. On the other side, we generalise the classical lower bound of Yao [SIAM J. Comput. 8, 1979], for the problem with a single pattern, to deal with arbitrary dictionaries, and determine it to be at least $\\kappa_{{}_\\textrm{LB}}\\, \\phi(r)$. This proves the optimality of the algorithm, improving and correcting previous claims.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"9 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The complexity of the Multiple Pattern Matching Problem for random strings\",\"authors\":\"Frédérique Bassino, Tsinjo Rakotoarimalala, A. Sportiello\",\"doi\":\"10.1137/1.9781611975062.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generalise a multiple string pattern matching algorithm, recently proposed by Fredriksson and Grabowski [J. Discr. Alg. 7, 2009], to deal with arbitrary dictionaries on an alphabet of size $s$. If $r_m$ is the number of words of length $m$ in the dictionary, and $\\\\phi(r) = \\\\max_m \\\\ln(s\\\\, m\\\\, r_m)/m$, the complexity rate for the string characters to be read by this algorithm is at most $\\\\kappa_{{}_\\\\textrm{UB}}\\\\, \\\\phi(r)$ for some constant $\\\\kappa_{{}_\\\\textrm{UB}}$. On the other side, we generalise the classical lower bound of Yao [SIAM J. Comput. 8, 1979], for the problem with a single pattern, to deal with arbitrary dictionaries, and determine it to be at least $\\\\kappa_{{}_\\\\textrm{LB}}\\\\, \\\\phi(r)$. This proves the optimality of the algorithm, improving and correcting previous claims.\",\"PeriodicalId\":340112,\"journal\":{\"name\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"volume\":\"9 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611975062.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611975062.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们推广了Fredriksson和Grabowski最近提出的一种多字符串模式匹配算法[J]。Discr。[Alg. 7, 2009],用于处理大小为$s$的字母表上的任意字典。如果$r_m$是字典中长度为$m$的单词数,$\phi(r) = \max_m \ln(s\, m\, r_m)/m$,则对于某个常数$\kappa_{{}_\textrm{UB}}$,该算法读取字符串字符的复杂度最多为$\kappa_{{}_\textrm{UB}}\, \phi(r)$。另一方面,我们推广了Yao的经典下界[SIAM J. Comput. 8, 1979],用于处理任意字典的单一模式问题,并确定其至少为$\kappa_{{}_\textrm{LB}}\, \phi(r)$。这证明了算法的最优性,改进和纠正了以前的说法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The complexity of the Multiple Pattern Matching Problem for random strings
We generalise a multiple string pattern matching algorithm, recently proposed by Fredriksson and Grabowski [J. Discr. Alg. 7, 2009], to deal with arbitrary dictionaries on an alphabet of size $s$. If $r_m$ is the number of words of length $m$ in the dictionary, and $\phi(r) = \max_m \ln(s\, m\, r_m)/m$, the complexity rate for the string characters to be read by this algorithm is at most $\kappa_{{}_\textrm{UB}}\, \phi(r)$ for some constant $\kappa_{{}_\textrm{UB}}$. On the other side, we generalise the classical lower bound of Yao [SIAM J. Comput. 8, 1979], for the problem with a single pattern, to deal with arbitrary dictionaries, and determine it to be at least $\kappa_{{}_\textrm{LB}}\, \phi(r)$. This proves the optimality of the algorithm, improving and correcting previous claims.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信