使用情景控制器的强化学习进行工程设计优化

IF 1.2 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jun Yang, Zhenbo Cheng, Gang Xiao, Xuesong Xu, Yaming Wang, Haonan Ding, Diting Zhou
{"title":"使用情景控制器的强化学习进行工程设计优化","authors":"Jun Yang,&nbsp;Zhenbo Cheng,&nbsp;Gang Xiao,&nbsp;Xuesong Xu,&nbsp;Yaming Wang,&nbsp;Haonan Ding,&nbsp;Diting Zhou","doi":"10.1049/ccs2.12063","DOIUrl":null,"url":null,"abstract":"<p>Engineers solving engineering design problems can be regarded as a gradual optimisation process that involves strategising. The process can be modelled as a reinforcement learning (RL) framework. This article presents an RL model with episodic controllers to solve engineering problems. Episodic controllers provide a mechanism for using the short-term and long-term memories to improve the efficiency of searching for engineering problem solutions. This work demonstrates that the two kinds of models of memories can be incorporated into the existing RL framework. Finally, an optimised design problem of a crane girder is illustrated by RL with episodic controllers. The work presented in this study leverages the RL model that has been shown to mimic human problem solving in engineering optimised design problems.</p>","PeriodicalId":33652,"journal":{"name":"Cognitive Computation and Systems","volume":"4 4","pages":"340-350"},"PeriodicalIF":1.2000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ccs2.12063","citationCount":"1","resultStr":"{\"title\":\"Engineering design optimisation using reinforcement learning with episodic controllers\",\"authors\":\"Jun Yang,&nbsp;Zhenbo Cheng,&nbsp;Gang Xiao,&nbsp;Xuesong Xu,&nbsp;Yaming Wang,&nbsp;Haonan Ding,&nbsp;Diting Zhou\",\"doi\":\"10.1049/ccs2.12063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Engineers solving engineering design problems can be regarded as a gradual optimisation process that involves strategising. The process can be modelled as a reinforcement learning (RL) framework. This article presents an RL model with episodic controllers to solve engineering problems. Episodic controllers provide a mechanism for using the short-term and long-term memories to improve the efficiency of searching for engineering problem solutions. This work demonstrates that the two kinds of models of memories can be incorporated into the existing RL framework. Finally, an optimised design problem of a crane girder is illustrated by RL with episodic controllers. The work presented in this study leverages the RL model that has been shown to mimic human problem solving in engineering optimised design problems.</p>\",\"PeriodicalId\":33652,\"journal\":{\"name\":\"Cognitive Computation and Systems\",\"volume\":\"4 4\",\"pages\":\"340-350\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ccs2.12063\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Computation and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ccs2.12063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation and Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ccs2.12063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

工程师解决工程设计问题可以被看作是一个渐进的优化过程,其中包括制定战略。这个过程可以建模为一个强化学习(RL)框架。本文提出了一个带有情景控制器的强化学习模型来解决工程问题。情节控制器提供了一种使用短期和长期记忆的机制,以提高寻找工程问题解决方案的效率。这项工作表明,这两种记忆模型可以合并到现有的强化学习框架中。最后,用情景控制器的强化学习方法说明了起重机梁的优化设计问题。本研究中提出的工作利用了RL模型,该模型已被证明可以在工程优化设计问题中模仿人类解决问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Engineering design optimisation using reinforcement learning with episodic controllers

Engineering design optimisation using reinforcement learning with episodic controllers

Engineers solving engineering design problems can be regarded as a gradual optimisation process that involves strategising. The process can be modelled as a reinforcement learning (RL) framework. This article presents an RL model with episodic controllers to solve engineering problems. Episodic controllers provide a mechanism for using the short-term and long-term memories to improve the efficiency of searching for engineering problem solutions. This work demonstrates that the two kinds of models of memories can be incorporated into the existing RL framework. Finally, an optimised design problem of a crane girder is illustrated by RL with episodic controllers. The work presented in this study leverages the RL model that has been shown to mimic human problem solving in engineering optimised design problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Computation and Systems
Cognitive Computation and Systems Computer Science-Computer Science Applications
CiteScore
2.50
自引率
0.00%
发文量
39
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信