最大团问题的多项式时间算法

Z. Akbari
{"title":"最大团问题的多项式时间算法","authors":"Z. Akbari","doi":"10.1109/ICIS.2013.6607889","DOIUrl":null,"url":null,"abstract":"After more than six decades of its introduction, the maximum clique problem, which is one of the most applicable problems in the graph theory, has still no polynomial-time solution. This paper presents a polynomial-time algorithm for this problem, which detects the maximum clique of a given graph through a recursive approach. This polynomial solution to the clique problem, as an NP-complete problem, causes every problem in NP to have a polynomial solution, which leads to the equality of P and NP complexity classes.","PeriodicalId":345020,"journal":{"name":"2013 IEEE/ACIS 12th International Conference on Computer and Information Science (ICIS)","volume":"68 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A polynomial-time algorithm for the maximum clique problem\",\"authors\":\"Z. Akbari\",\"doi\":\"10.1109/ICIS.2013.6607889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"After more than six decades of its introduction, the maximum clique problem, which is one of the most applicable problems in the graph theory, has still no polynomial-time solution. This paper presents a polynomial-time algorithm for this problem, which detects the maximum clique of a given graph through a recursive approach. This polynomial solution to the clique problem, as an NP-complete problem, causes every problem in NP to have a polynomial solution, which leads to the equality of P and NP complexity classes.\",\"PeriodicalId\":345020,\"journal\":{\"name\":\"2013 IEEE/ACIS 12th International Conference on Computer and Information Science (ICIS)\",\"volume\":\"68 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE/ACIS 12th International Conference on Computer and Information Science (ICIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIS.2013.6607889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE/ACIS 12th International Conference on Computer and Information Science (ICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIS.2013.6607889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

极大团问题作为图论中应用最广泛的问题之一,在其问世60多年后,仍然没有多项式时间解。本文提出了一种多项式时间算法,该算法通过递归方法检测给定图的最大团。团问题的多项式解作为一个NP完全问题,使得NP中的每一个问题都有一个多项式解,从而导致P和NP复杂度类相等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A polynomial-time algorithm for the maximum clique problem
After more than six decades of its introduction, the maximum clique problem, which is one of the most applicable problems in the graph theory, has still no polynomial-time solution. This paper presents a polynomial-time algorithm for this problem, which detects the maximum clique of a given graph through a recursive approach. This polynomial solution to the clique problem, as an NP-complete problem, causes every problem in NP to have a polynomial solution, which leads to the equality of P and NP complexity classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信