基于后置图的关键词搜索的预滤波动态时间翘曲

Gozde Cetinkaya, Batuhan Gündogdu, M. Saraçlar
{"title":"基于后置图的关键词搜索的预滤波动态时间翘曲","authors":"Gozde Cetinkaya, Batuhan Gündogdu, M. Saraçlar","doi":"10.1109/SLT.2016.7846292","DOIUrl":null,"url":null,"abstract":"In this study, we present a pre-filtering method for dynamic time warping (DTW) to improve the efficiency of a posteriorgram based keyword search (KWS) system. The ultimate aim is to improve the performance of a large vocabulary continuous speech recognition (LVCSR) based KWS system using the posteriorgram based KWS approach. We use phonetic posteriorgrams to represent the audio data and generate average posteriorgrams to represent the given text queries. The DTW algorithm is used to determine the optimal alignment between the posteriorgrams of the audio data and the queries. Since DTW has quadratic complexity, it can be relatively inefficient for keyword search. Our main contribution is to reduce this complexity by pre-filtering based on a vector space representation of the two posteriorgrams without any degradation in performance. Experimental results show that our system reduces the complexity and when combined with the baseline LVCSR based KWS system, it improves the performance both for the out-of-vocabulary (OOV) queries and the in-vocabulary (IV) queries.","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"389 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Pre-filtered dynamic time warping for posteriorgram based keyword search\",\"authors\":\"Gozde Cetinkaya, Batuhan Gündogdu, M. Saraçlar\",\"doi\":\"10.1109/SLT.2016.7846292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we present a pre-filtering method for dynamic time warping (DTW) to improve the efficiency of a posteriorgram based keyword search (KWS) system. The ultimate aim is to improve the performance of a large vocabulary continuous speech recognition (LVCSR) based KWS system using the posteriorgram based KWS approach. We use phonetic posteriorgrams to represent the audio data and generate average posteriorgrams to represent the given text queries. The DTW algorithm is used to determine the optimal alignment between the posteriorgrams of the audio data and the queries. Since DTW has quadratic complexity, it can be relatively inefficient for keyword search. Our main contribution is to reduce this complexity by pre-filtering based on a vector space representation of the two posteriorgrams without any degradation in performance. Experimental results show that our system reduces the complexity and when combined with the baseline LVCSR based KWS system, it improves the performance both for the out-of-vocabulary (OOV) queries and the in-vocabulary (IV) queries.\",\"PeriodicalId\":281635,\"journal\":{\"name\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"389 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2016.7846292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在这项研究中,我们提出了一种动态时间规整(DTW)的预滤波方法,以提高基于后置图的关键字搜索(KWS)系统的效率。最终目的是利用基于后验图的KWS方法来提高基于大词汇量连续语音识别(LVCSR)系统的性能。我们使用语音后图来表示音频数据,并生成平均后图来表示给定的文本查询。DTW算法用于确定音频数据的后置图与查询之间的最佳对齐。由于DTW具有二次复杂度,因此对于关键字搜索而言,它的效率相对较低。我们的主要贡献是通过基于两个后置图的向量空间表示进行预滤波来降低这种复杂性,而不会降低性能。实验结果表明,该系统降低了复杂性,并且与基于基线LVCSR的KWS系统相结合,提高了词汇外查询(OOV)和词汇内查询(IV)的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pre-filtered dynamic time warping for posteriorgram based keyword search
In this study, we present a pre-filtering method for dynamic time warping (DTW) to improve the efficiency of a posteriorgram based keyword search (KWS) system. The ultimate aim is to improve the performance of a large vocabulary continuous speech recognition (LVCSR) based KWS system using the posteriorgram based KWS approach. We use phonetic posteriorgrams to represent the audio data and generate average posteriorgrams to represent the given text queries. The DTW algorithm is used to determine the optimal alignment between the posteriorgrams of the audio data and the queries. Since DTW has quadratic complexity, it can be relatively inefficient for keyword search. Our main contribution is to reduce this complexity by pre-filtering based on a vector space representation of the two posteriorgrams without any degradation in performance. Experimental results show that our system reduces the complexity and when combined with the baseline LVCSR based KWS system, it improves the performance both for the out-of-vocabulary (OOV) queries and the in-vocabulary (IV) queries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信