广义Reed-Muller表达式的精确最小化算法

Tsutomu Sasao, D. Dednath
{"title":"广义Reed-Muller表达式的精确最小化算法","authors":"Tsutomu Sasao, D. Dednath","doi":"10.1109/APCCAS.1994.514594","DOIUrl":null,"url":null,"abstract":"A generalized Reed-Muller expression (GRM) is obtained by negating some of the literals in a positive polarity Reed-Muller expression (PPRM). There are at most 2/sup n2(n-1)/ different GRMs for an n-variable function. A minimum GRM is one with the fewest products. This paper presents certain properties and an exact minimization algorithm for GRMs. The minimization algorithm uses binary decision diagrams. Up to five variables, all the representative functions of NP-equivalence classes were generated, and minimized. A table compares the number of products necessary to represent 5-variable functions for 7 classes of expressions: FPRMs, KROs, PSDRMs, PSD-KROs, GRMs, ESOPs, and SOPs. GRMs require, on the average, fewer products than sum-of-products expressions and have easily testable realizations.","PeriodicalId":231368,"journal":{"name":"Proceedings of APCCAS'94 - 1994 Asia Pacific Conference on Circuits and Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"An exact minimization algorithm for generalized Reed-Muller expressions\",\"authors\":\"Tsutomu Sasao, D. Dednath\",\"doi\":\"10.1109/APCCAS.1994.514594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A generalized Reed-Muller expression (GRM) is obtained by negating some of the literals in a positive polarity Reed-Muller expression (PPRM). There are at most 2/sup n2(n-1)/ different GRMs for an n-variable function. A minimum GRM is one with the fewest products. This paper presents certain properties and an exact minimization algorithm for GRMs. The minimization algorithm uses binary decision diagrams. Up to five variables, all the representative functions of NP-equivalence classes were generated, and minimized. A table compares the number of products necessary to represent 5-variable functions for 7 classes of expressions: FPRMs, KROs, PSDRMs, PSD-KROs, GRMs, ESOPs, and SOPs. GRMs require, on the average, fewer products than sum-of-products expressions and have easily testable realizations.\",\"PeriodicalId\":231368,\"journal\":{\"name\":\"Proceedings of APCCAS'94 - 1994 Asia Pacific Conference on Circuits and Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of APCCAS'94 - 1994 Asia Pacific Conference on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCCAS.1994.514594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of APCCAS'94 - 1994 Asia Pacific Conference on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS.1994.514594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

通过对正极性Reed-Muller表达式(PPRM)中的一些字元进行消去,得到了广义Reed-Muller表达式(GRM)。对于一个n变量函数,最多有2/sup n2(n-1)/个不同的grm。最小GRM是指产品最少的GRM。本文给出了grm的一些性质和精确的最小化算法。最小化算法使用二进制决策图。在最多5个变量的情况下,生成了所有np等价类的代表函数,并进行了最小化。表格比较了7类表达式(FPRMs、KROs、PSDRMs、PSD-KROs、GRMs、ESOPs和SOPs)表示5变量函数所需的产品数量。平均而言,grm比乘积和表达式需要更少的乘积,并且易于测试实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An exact minimization algorithm for generalized Reed-Muller expressions
A generalized Reed-Muller expression (GRM) is obtained by negating some of the literals in a positive polarity Reed-Muller expression (PPRM). There are at most 2/sup n2(n-1)/ different GRMs for an n-variable function. A minimum GRM is one with the fewest products. This paper presents certain properties and an exact minimization algorithm for GRMs. The minimization algorithm uses binary decision diagrams. Up to five variables, all the representative functions of NP-equivalence classes were generated, and minimized. A table compares the number of products necessary to represent 5-variable functions for 7 classes of expressions: FPRMs, KROs, PSDRMs, PSD-KROs, GRMs, ESOPs, and SOPs. GRMs require, on the average, fewer products than sum-of-products expressions and have easily testable realizations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信