利用自适应卡尔曼滤波对过程噪声方差未知的目标进行跟踪

P. Gutman, M. Velger
{"title":"利用自适应卡尔曼滤波对过程噪声方差未知的目标进行跟踪","authors":"P. Gutman, M. Velger","doi":"10.1109/CDC.1988.194435","DOIUrl":null,"url":null,"abstract":"A simple algorithm is suggested to estimate, using a Kalman filter, the unknown process noise variance of an otherwise known linear plant. The process noise variance estimator is essentially dead beat, using the difference between the expected prediction error variance, computed in the Kalman filter, and the measured prediction error variance. The estimate is used to adapt the Kalman filter. The use of the adaptive filter is demonstrated in a simulated example in which a wildly manoeuvring target is tracked.<<ETX>>","PeriodicalId":113534,"journal":{"name":"Proceedings of the 27th IEEE Conference on Decision and Control","volume":"25 9-10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Tracking targets with unknown process noise variance using adaptive Kalman filtering\",\"authors\":\"P. Gutman, M. Velger\",\"doi\":\"10.1109/CDC.1988.194435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simple algorithm is suggested to estimate, using a Kalman filter, the unknown process noise variance of an otherwise known linear plant. The process noise variance estimator is essentially dead beat, using the difference between the expected prediction error variance, computed in the Kalman filter, and the measured prediction error variance. The estimate is used to adapt the Kalman filter. The use of the adaptive filter is demonstrated in a simulated example in which a wildly manoeuvring target is tracked.<<ETX>>\",\"PeriodicalId\":113534,\"journal\":{\"name\":\"Proceedings of the 27th IEEE Conference on Decision and Control\",\"volume\":\"25 9-10\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1988.194435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1988.194435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种简单的算法,利用卡尔曼滤波估计未知过程噪声方差的线性植物。过程噪声方差估计器本质上是死拍的,使用在卡尔曼滤波器中计算的预期预测误差方差与测量的预测误差方差之间的差。该估计用于自适应卡尔曼滤波器。通过对一个剧烈机动目标的跟踪仿真,说明了自适应滤波器的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tracking targets with unknown process noise variance using adaptive Kalman filtering
A simple algorithm is suggested to estimate, using a Kalman filter, the unknown process noise variance of an otherwise known linear plant. The process noise variance estimator is essentially dead beat, using the difference between the expected prediction error variance, computed in the Kalman filter, and the measured prediction error variance. The estimate is used to adapt the Kalman filter. The use of the adaptive filter is demonstrated in a simulated example in which a wildly manoeuvring target is tracked.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信