{"title":"利用自适应卡尔曼滤波对过程噪声方差未知的目标进行跟踪","authors":"P. Gutman, M. Velger","doi":"10.1109/CDC.1988.194435","DOIUrl":null,"url":null,"abstract":"A simple algorithm is suggested to estimate, using a Kalman filter, the unknown process noise variance of an otherwise known linear plant. The process noise variance estimator is essentially dead beat, using the difference between the expected prediction error variance, computed in the Kalman filter, and the measured prediction error variance. The estimate is used to adapt the Kalman filter. The use of the adaptive filter is demonstrated in a simulated example in which a wildly manoeuvring target is tracked.<<ETX>>","PeriodicalId":113534,"journal":{"name":"Proceedings of the 27th IEEE Conference on Decision and Control","volume":"25 9-10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Tracking targets with unknown process noise variance using adaptive Kalman filtering\",\"authors\":\"P. Gutman, M. Velger\",\"doi\":\"10.1109/CDC.1988.194435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simple algorithm is suggested to estimate, using a Kalman filter, the unknown process noise variance of an otherwise known linear plant. The process noise variance estimator is essentially dead beat, using the difference between the expected prediction error variance, computed in the Kalman filter, and the measured prediction error variance. The estimate is used to adapt the Kalman filter. The use of the adaptive filter is demonstrated in a simulated example in which a wildly manoeuvring target is tracked.<<ETX>>\",\"PeriodicalId\":113534,\"journal\":{\"name\":\"Proceedings of the 27th IEEE Conference on Decision and Control\",\"volume\":\"25 9-10\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1988.194435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1988.194435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tracking targets with unknown process noise variance using adaptive Kalman filtering
A simple algorithm is suggested to estimate, using a Kalman filter, the unknown process noise variance of an otherwise known linear plant. The process noise variance estimator is essentially dead beat, using the difference between the expected prediction error variance, computed in the Kalman filter, and the measured prediction error variance. The estimate is used to adapt the Kalman filter. The use of the adaptive filter is demonstrated in a simulated example in which a wildly manoeuvring target is tracked.<>