断层快速变形的热孔力学分析

I. Vardoulakis
{"title":"断层快速变形的热孔力学分析","authors":"I. Vardoulakis","doi":"10.1201/9781003077497-68","DOIUrl":null,"url":null,"abstract":"In this paper the basic mathematical structure of a thermo-poro-mechanical model for faults under rapid shear is discussed. The analysis is 1D in space and concerns the infinitely extended fault. The gauge material is considered as a two-phase material consisting of a thermo-elastic fluid and of a thermoporo-elasto-viscoplastic skeleton. The governing equations are derived from first principles, expressing mass, energy and momentum balance inside the fault. They are a set of coupled diffusion-generation equations that contain three unknown functions, the pore-pressure, the temperature and the velocity field inside the fault. The original mathemetically ill-posed problem is regularized using a viscous-type and a 2 gradient regularization. Numerical results are presented and discussed. ) t , z ( p , the temperature ) t , z ( θ and the velocity ) t , z ( v are assumed to be functions only of the time t and of the position z in normal to the band direction (Figure 1). Figure 1. The deforming shear-band with heat and fluid fluxes As is shown in Vardoulakis (2000) mass and energy balance equations together with Darcy's and Fourier's laws lead to a set of coupled diffusiongeneration equations for the pore-water pressure ) t , z ( p and the temperature field ) t , z ( θ inside the shear band. For easy reference we summarize here these equations and define the pertinent material parameters.","PeriodicalId":166080,"journal":{"name":"Powders and Grains 2001","volume":"2 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Thermo-poro-mechanical analysis of rapid fault deformation\",\"authors\":\"I. Vardoulakis\",\"doi\":\"10.1201/9781003077497-68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the basic mathematical structure of a thermo-poro-mechanical model for faults under rapid shear is discussed. The analysis is 1D in space and concerns the infinitely extended fault. The gauge material is considered as a two-phase material consisting of a thermo-elastic fluid and of a thermoporo-elasto-viscoplastic skeleton. The governing equations are derived from first principles, expressing mass, energy and momentum balance inside the fault. They are a set of coupled diffusion-generation equations that contain three unknown functions, the pore-pressure, the temperature and the velocity field inside the fault. The original mathemetically ill-posed problem is regularized using a viscous-type and a 2 gradient regularization. Numerical results are presented and discussed. ) t , z ( p , the temperature ) t , z ( θ and the velocity ) t , z ( v are assumed to be functions only of the time t and of the position z in normal to the band direction (Figure 1). Figure 1. The deforming shear-band with heat and fluid fluxes As is shown in Vardoulakis (2000) mass and energy balance equations together with Darcy's and Fourier's laws lead to a set of coupled diffusiongeneration equations for the pore-water pressure ) t , z ( p and the temperature field ) t , z ( θ inside the shear band. For easy reference we summarize here these equations and define the pertinent material parameters.\",\"PeriodicalId\":166080,\"journal\":{\"name\":\"Powders and Grains 2001\",\"volume\":\"2 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powders and Grains 2001\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9781003077497-68\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powders and Grains 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781003077497-68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了快速剪切作用下断层热孔力学模型的基本数学结构。该分析在空间上是一维的,涉及到无限扩展的断层。压力表材料被认为是由热弹性流体和热弹性-弹-粘塑性骨架组成的两相材料。控制方程由第一性原理导出,表达了断层内部的质量、能量和动量平衡。它们是一组耦合的扩散生成方程,包含断层内部的孔隙压力、温度和速度场三个未知函数。利用粘滞型正则化和2梯度正则化对原数学病态问题进行正则化。给出了数值结果并进行了讨论。假设t, z (p,温度)t, z (θ)和速度)t, z (v)仅是时间t和位置z垂直于带方向的函数(图1)。根据Vardoulakis(2000)的质量和能量平衡方程,结合Darcy定律和Fourier定律,可以得到剪切带内孔隙水压力t, z (p)和温度场t, z (θ)的耦合扩散生成方程。为了方便参考,我们在这里总结了这些方程并定义了相关的材料参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermo-poro-mechanical analysis of rapid fault deformation
In this paper the basic mathematical structure of a thermo-poro-mechanical model for faults under rapid shear is discussed. The analysis is 1D in space and concerns the infinitely extended fault. The gauge material is considered as a two-phase material consisting of a thermo-elastic fluid and of a thermoporo-elasto-viscoplastic skeleton. The governing equations are derived from first principles, expressing mass, energy and momentum balance inside the fault. They are a set of coupled diffusion-generation equations that contain three unknown functions, the pore-pressure, the temperature and the velocity field inside the fault. The original mathemetically ill-posed problem is regularized using a viscous-type and a 2 gradient regularization. Numerical results are presented and discussed. ) t , z ( p , the temperature ) t , z ( θ and the velocity ) t , z ( v are assumed to be functions only of the time t and of the position z in normal to the band direction (Figure 1). Figure 1. The deforming shear-band with heat and fluid fluxes As is shown in Vardoulakis (2000) mass and energy balance equations together with Darcy's and Fourier's laws lead to a set of coupled diffusiongeneration equations for the pore-water pressure ) t , z ( p and the temperature field ) t , z ( θ inside the shear band. For easy reference we summarize here these equations and define the pertinent material parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信