语音人机交互中用户满意度估计的统计方法

Alexander Schmitt, Benjamin Schatz, W. Minker
{"title":"语音人机交互中用户满意度估计的统计方法","authors":"Alexander Schmitt, Benjamin Schatz, W. Minker","doi":"10.1109/AEECT.2011.6132535","DOIUrl":null,"url":null,"abstract":"This paper addresses a new approach for statistical modeling of user satisfaction in Spoken Dialogue Systems (SDS) and thereby allows an online monitoring of spoken human-machine interaction. The presented technique relies on a large set of input variables originating from system log files that quantify the ongoing spoken human-machine interaction. The target variable, user satisfaction (US), is captured in a lab study on a 5 point scale with 46 users interacting with an SDS. The model, which is based on Support Vector Machines (SVM) yields a performance of 49.2% unweighted average recall (Cohen's κ = .442, Spearman's ρ = .668) and significantly outperforms related work in that field.","PeriodicalId":408446,"journal":{"name":"2011 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT)","volume":"67 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A statistical approach for estimating user satisfaction in spoken human-machine interaction\",\"authors\":\"Alexander Schmitt, Benjamin Schatz, W. Minker\",\"doi\":\"10.1109/AEECT.2011.6132535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses a new approach for statistical modeling of user satisfaction in Spoken Dialogue Systems (SDS) and thereby allows an online monitoring of spoken human-machine interaction. The presented technique relies on a large set of input variables originating from system log files that quantify the ongoing spoken human-machine interaction. The target variable, user satisfaction (US), is captured in a lab study on a 5 point scale with 46 users interacting with an SDS. The model, which is based on Support Vector Machines (SVM) yields a performance of 49.2% unweighted average recall (Cohen's κ = .442, Spearman's ρ = .668) and significantly outperforms related work in that field.\",\"PeriodicalId\":408446,\"journal\":{\"name\":\"2011 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT)\",\"volume\":\"67 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AEECT.2011.6132535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AEECT.2011.6132535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种在口语对话系统(SDS)中对用户满意度进行统计建模的新方法,从而允许对口语人机交互进行在线监测。所提出的技术依赖于来自系统日志文件的大量输入变量,这些输入变量量化了正在进行的口头人机交互。目标变量,用户满意度(US),在实验室研究中以5分制捕获,有46个用户与SDS交互。该模型基于支持向量机(SVM),其未加权平均召回率为49.2% (Cohen的κ = .442, Spearman的ρ = .668),显著优于该领域的相关工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A statistical approach for estimating user satisfaction in spoken human-machine interaction
This paper addresses a new approach for statistical modeling of user satisfaction in Spoken Dialogue Systems (SDS) and thereby allows an online monitoring of spoken human-machine interaction. The presented technique relies on a large set of input variables originating from system log files that quantify the ongoing spoken human-machine interaction. The target variable, user satisfaction (US), is captured in a lab study on a 5 point scale with 46 users interacting with an SDS. The model, which is based on Support Vector Machines (SVM) yields a performance of 49.2% unweighted average recall (Cohen's κ = .442, Spearman's ρ = .668) and significantly outperforms related work in that field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信